【題目】在新晚報舉辦的“萬人戶外徒步活動”中,為統(tǒng)計參加活動人員的年齡情況,從參加人員中隨機抽取了若干人的年齡作為樣本,進行數(shù)據(jù)統(tǒng)計,制成如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分).

(1)本次活動統(tǒng)計的樣本容量是多少?
(2)求本次活動中70歲以上的人數(shù),并補全條形統(tǒng)計圖;
(3)本次參加活動的總?cè)藬?shù)約為12000人,請你估算參加活動人數(shù)最多的年齡段的人數(shù).

【答案】
(1)解:本次活動統(tǒng)計的樣本容量是32÷32%=100人
(2)解:本次活動中70歲以上的人數(shù)100×10%=10人,統(tǒng)計如下:


(3)解:12000×32%=3840(人)

答:參加活動人數(shù)最多的年齡段的人數(shù)為3840人


【解析】(1)利用60﹣69的人數(shù)32人占樣本容量的32%列式求得樣本容量即可;(2)求得本次活動中70歲以上的人數(shù),補全條形統(tǒng)計圖;(3)利用60﹣69的人數(shù)占的百分比乘總?cè)藬?shù)即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)用4個全等的直角三角形拼成如圖所示弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請你利用這個圖形解決下列問題:

(1)試說明a2+b2=c2;

(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寒假期間,一些同學將要到A,B,C,D四個地方參加冬令營活動,現(xiàn)從這些同學中隨機調(diào)查了一部分同學.根據(jù)調(diào)查結(jié)果,繪制成了如下兩幅統(tǒng)計圖:

(1)扇形A的圓心角的度數(shù)為 , 若此次冬令營一共有320名學生參加,則前往C地的學生約有人,并將條形統(tǒng)計圖補充完整;
(2)若某姐弟兩人中只能有一人參加,姐弟倆決定用一個游戲來確定參加者:在4張形狀、大小完全相同的卡片上分別寫上﹣1,1,2,3四個整數(shù),先讓姐姐隨機地抽取一張,再由弟弟從余下的三張卡片中隨機地抽取一張.若抽取的兩張卡片上的數(shù)字之和小于3則姐姐參加,否則弟弟參加.用列表法或樹狀圖分析這種方法對姐弟倆是否公平?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 是半圓,連接AB,點O為AB的中點,點C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是(

A.26°
B.28°
C.30°
D.32°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.求證:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形中,上一動點,點的延長線上,平分,交于點.

(1)如圖①,連接,求證: ;

(2)如圖②,當時,求證:

(3)如圖③,當時,若平分,求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的兩條邊長分別是1cm2cm,一個內(nèi)角為40度.

(1)請你借助圖1畫出一個滿足題設條件的三角形;

(2)你是否還能畫出既滿足題設條件,又與(1)中所畫的三角形不全等的三角形?若能,請你在圖1的右邊用“尺規(guī)作圖”作出所有這樣的三角形;若不能,請說明理由;

(3)如果將題設條件改為“三角形的兩條邊長分別是3cm4cm,一個內(nèi)角為40°”,那么滿足這一條件,且彼此不全等的三角形共有幾個.

友情提醒:請在你畫的圖中標出已知角的度數(shù)和已知邊的長度,“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關系,為什么?

(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

查看答案和解析>>

同步練習冊答案