已知正方形紙片的邊長為18,若將它按如圖所示方法折成一個正方體紙盒,則紙盒的邊(棱)長是


  1. A.
    6
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:根據(jù)正方形的邊長求出對角線的長度,再根據(jù)折疊的過程可知紙盒的棱長等于對角線一半的,然后求解即可.
解答:∵正方形紙片的邊長為18,
∴對角線長為18
由折疊的最后一個圖形可知,紙盒的棱長等于對角線一半的
所以,紙盒棱長=××18=3
故選B.
點評:此題考查了折疊的性質(zhì),主要利用了正方形的對角線與邊長的關系,根據(jù)折疊最后一個圖形判斷出紙盒的棱長與對角線的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•石景山區(qū)二模)已知正方形紙片的邊長為18,若將它按如圖所示方法折成一個正方體紙盒,則紙盒的邊(棱)長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知如圖①、②,正方形ABCD,(1)在圖①的正方形ABCD內(nèi),找一點P使∠BPC=90°,畫出這個點;
(2)在圖②正方形ABCD內(nèi),找出所有點P使∠BPC=60°,用尺規(guī)作圖作出圖形(作圖保留痕跡不用寫作法,寫出結(jié)論)
(3)已知正方形紙片的邊長為4,從這樣的紙片中剪出兩個最大的且全等的三角形紙片△BCP和△ADP1,使∠AP1D=∠BPC=60°,在圖③畫出這兩個三角形,并求出剪出的一個三角形紙片的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正方形紙片的邊長為18,若將它按下圖所示方法折成一個正方體紙盒,則紙盒的邊(棱)長是(   )

 A.             B.           C.            D.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正方形紙片的邊長為18,若將它按下圖所示方法折成一個正方體紙盒,則紙盒的邊(棱)長是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年九年級下學期期末考試數(shù)學卷 題型:解答題

已知正方形紙片的邊長為2.操作:如圖1,將正方形紙片折疊,使頂點落在邊上的點處(點、不重合),折痕為,折疊后邊落在的位置,交于點

探究:1.觀察操作結(jié)果,找到一個與相似的三角形,并證明你的結(jié)論;

2.當點位于中點時,你找到的三角形與周長的比是多少(圖2為備用圖)?

 

查看答案和解析>>

同步練習冊答案