【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD上兩點(diǎn),∠EAF=45°, 過點(diǎn)A作∠GAB=∠FAD,且點(diǎn)G為邊CB延長線上一點(diǎn).①△GAB≌△FAD嗎?說明理由。②若線段DF=4, BE=8,求線段EF的長度。③若DF=4,CF=8.求線段EF的長度。

【答案】(1)全等 (2)7 (3)EF=10

【解析】(1)、根據(jù)正方形的性質(zhì)得出AB=AD,∠ABG=∠D,結(jié)合∠GAB=∠FAD得出三角形全等;(2)、根據(jù)三角形全等得出BG=DF=4,AG=AF,根據(jù)∠EAF=45°以及三角形全等、正方形的性質(zhì)得出∠GAE=∠EAF,從而得出△GAE和△FAE全等,從而得出答案;(3)、根據(jù)第二題的結(jié)論得出答案.

(1)全等

證明:∵四邊形ABCD為正方形, ∴AB=AD,∠ABG=∠D,

在△ABG和△ADF中 ∵∠GAB=∠FAD,AB=AD,∠ABG=∠D, ∴△GAB≌△FAD.

(2)解:∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,

∵△GAB≌△FAD, ∴∠GAB=∠FAD,AG=AF, ∴∠GAB+∠BAE=45°,∴∠GAE =45°,

∴∠GAE=∠EAF, 在△GAE和△FAE中,∵AG=AF, ∠GAE=∠EAF,AE=AE,

∴△GAE≌△FAE(SAS), ∴EF=GE, ∵△GAB≌△FAD,∴GB=DF,

∴EF=GE=GB+BE=FD+BE=3+4=7;

(3)EF=10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),BD=12,則△DOE的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:在平面直角坐標(biāo)系中,如果點(diǎn)P的坐標(biāo)為(mn),向量可以用點(diǎn)P的坐標(biāo)表示為:=(m,n).已知=(x1,y1),=(x2,y2),如果x1x2+y1y20,那么互相垂直,在下列四組向量中,互相垂直的是( 。

A.=(3,20190),=(﹣31,1

B.=(1,1),=(+11

C.=(),=((﹣2,8

D.=(+2),=(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6AC=10,ADBC邊上的中線,且AD=4,延長AD到點(diǎn)E,使DE=AD,連接CE

(1)求證:△AEC是直角三角形.

(2)BC邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABD中,∠BAD80°CBD延長線上一點(diǎn),∠BAC130°,∠ABD的角平分線與AC交于點(diǎn)E,連接DE

1)求證:點(diǎn)EDA、DC的距離相等;

2)求∠BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

同步練習(xí)冊(cè)答案