【題目】已知:如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=-x+6與x軸、y軸分別交于A、B兩點(diǎn)、

直線(xiàn)y=ax+a經(jīng)過(guò)點(diǎn)B交x軸于點(diǎn)C.

(1)求AC長(zhǎng);

(2)點(diǎn)D為線(xiàn)段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)D作x軸平行線(xiàn)分別交OB、AB于點(diǎn)E、F,點(diǎn)G為AF中點(diǎn),直線(xiàn)EG交x軸于H,設(shè)點(diǎn)D的橫坐標(biāo)為t,線(xiàn)段AH長(zhǎng)為d(d≠0),求d與t之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,點(diǎn)K為線(xiàn)段OA上一點(diǎn),連接EK,過(guò)F作FM⊥EK,直線(xiàn)FM交x軸于點(diǎn)M,當(dāng)KH=2CO,點(diǎn)0到直線(xiàn)FM的距離為時(shí),求點(diǎn)D的坐標(biāo)。

備用圖 備用圖

【答案】(1)AC長(zhǎng)是9 ;(2)d=-2t ;(3)D,

【解析】試題分析:(1)令y=0時(shí),可得到A、C的坐標(biāo),從而得到答案;

2)先直線(xiàn)BC解析式為y=2x+6.表示出,進(jìn)一步得到x=-2t.再證明ΔEFG≌ΔHAG,得到AH=EF=-2t

(3)過(guò)A點(diǎn)作PAACDF的延長(zhǎng)線(xiàn)于R,交MF的延長(zhǎng)線(xiàn)于P,作ONFMN,PMEK于點(diǎn)Q,則四邊形OARE是矩形,可證ΔEKO≌ΔFPR,得到PR=OK=-2t.設(shè)OM=m,PA=2t+6-2t=6.分兩種情況討論:①當(dāng)M點(diǎn)在x軸的負(fù)半軸上時(shí),②當(dāng)M點(diǎn)在x軸的正半軸上時(shí).

試題解析:解:(1)當(dāng)y=0時(shí),-x+6=0,∴x=6,∴A(6,0) , ax+a=0,∴a(x+1)=0.∵a0,∴x+1=0,∴x=-3 ,C(-3,0),∴AC=6-(-3)=9,∴AC長(zhǎng)是9

2)當(dāng)x=0時(shí),y=6,∴B(06),∴a=6,∴直線(xiàn)BC解析式為y=2x+6

當(dāng)x=t時(shí), .∵DFAC ,∴2t+6=-x+6,∴x=-2t,∴EF=-2t

∵點(diǎn)GAF中點(diǎn),∴AG=GF .∵DFAC,∴∠FEG=∠GHA,∠EGF=∠HGA,∴ΔEFG≌ΔHAG,∴AH=EF=-2t

(3)過(guò)A點(diǎn)作PAACDF的延長(zhǎng)線(xiàn)于R,交MF的延長(zhǎng)線(xiàn)于P,作ONFMN,PMEK于點(diǎn)Q,四邊形OARE是矩形,∴ER=OA=6,∴FR=2t+6=OE,可證∠P=∠KEO,∠PRE=∠EOK=90°,∴ΔEKO≌ΔFPR,∴PR=OK.∵KH=2CO=2×3=6,∴PR=OK=-2t

設(shè)OM=mPA=2t+6-2t=6.分兩種情況討論:

M點(diǎn)在x軸的負(fù)半軸上時(shí).∵,sinNMO=,AM=m+6,由勾股定理可求:m1= (不合題意舍去),m2=2,tanPMA=

M點(diǎn)在x軸的正半軸上時(shí),AM=6-m同理可求:m1= (不合題意舍去),m2=

tanPMA=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一水果店,從批發(fā)市場(chǎng)按4千克的價(jià)格購(gòu)進(jìn)10噸蘋(píng)果,為了保鮮放在冷藏室里,但每天仍有一些蘋(píng)果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測(cè),每天每千克價(jià)格上漲元.

設(shè)x天后每千克蘋(píng)果的價(jià)格為p元,寫(xiě)出px的函數(shù)關(guān)系式;

若存放x天后將蘋(píng)果一次性售出,設(shè)銷(xiāo)售總金額為y元,求出yx的函數(shù)關(guān)系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A-3,4).

1)求b的值;

2過(guò)點(diǎn)A軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)B,在直線(xiàn)AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線(xiàn)OP的對(duì)稱(chēng)點(diǎn)C

①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線(xiàn)OP的表達(dá)式;

②連結(jié)BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲于某日下午1時(shí)騎自行車(chē)從A地出發(fā)前往B地,乙于同日下午騎摩托車(chē)從A地出發(fā)前往B地,如圖所示,圖中折線(xiàn)PQR和線(xiàn)段MN分別表示甲和乙所行駛的路程和時(shí)間之間的關(guān)系圖象,試根據(jù)圖象回答下列問(wèn)題.

1A、B兩地相距多少千米?甲出發(fā)幾小時(shí),乙才開(kāi)始出發(fā)?

2)甲騎自行車(chē)的平均速度是多少?乙騎摩托車(chē)的平均速度是多少?

3)乙在該日下午幾時(shí)追上了甲?這時(shí)兩人離B地還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,若ABCD,求∠B+D+E1的度數(shù)?

2)如圖,若ABCD,求∠B+D+E1+E2的度數(shù)?

3)如圖,若ABCD,求∠B+D+E1+E2+E3的度數(shù)?

4)如圖,若ABCD,猜想∠B+D+E1+E2++En的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[x]表示不超過(guò)x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:當(dāng)x=﹣0.5時(shí),y=0.5;②y的取值范圍是:0≤y≤1;③對(duì)于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有   (只填寫(xiě)正確命題的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)三角形的兩條邊長(zhǎng)為1cm2cm,一個(gè)內(nèi)角為45°

1)請(qǐng)你利用如圖45°角,畫(huà)出一個(gè)滿(mǎn)足題設(shè)條件的三角形.

2)你是否還能畫(huà)出既滿(mǎn)足題設(shè)條件,又與(1)中所畫(huà)的不全等的三角形?若能,請(qǐng)用尺規(guī)作圖畫(huà)出,若不能,請(qǐng)說(shuō)明理由.

3)如果將題設(shè)條件改為一個(gè)三角形的兩條邊長(zhǎng)為3cm4cm,一個(gè)內(nèi)角為45°”,畫(huà)出滿(mǎn)足這一條件的,且彼此不全等的所有三角形.(要求在圖中標(biāo)記3cm4cm的邊長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是-塊長(zhǎng)方形空地,長(zhǎng)為米,寬為米,現(xiàn)要對(duì)其進(jìn)行修整,在空白部分鋪設(shè)條寬度為米的小路,其余陰影部分種植草坪.

(1)用整式表示小路的面積;

(2)用整式表示草坪的面積;

(3)現(xiàn)有兩種修整方案,方案一:修建小路的寬度為米;方案二:修建小路的寬度為米.鋪設(shè)小路的造價(jià)為每平方米元,種植草坪的造價(jià)為每平方米元,請(qǐng)問(wèn)選用哪種方案最劃算.( 寫(xiě)出計(jì)算過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去冬今春,我市部分地區(qū)遭受了罕見(jiàn)的旱災(zāi),旱災(zāi)無(wú)情人有情.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車(chē)最多可裝飲用水40件和蔬菜10件,每輛乙種貨車(chē)最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門(mén)安排甲、乙兩種貨車(chē)時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);

3)在(2)的條件下,如果甲種貨車(chē)每輛需付運(yùn)費(fèi)400元,乙種貨車(chē)每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門(mén)應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案