【題目】“校園讀詩詞誦經(jīng)典比賽”結(jié)束后,評委劉老師將此次所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖,部分信息如下圖:
扇形統(tǒng)計圖 頻數(shù)直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績的中位數(shù)在__________分?jǐn)?shù)段;補全頻數(shù)直方圖.
(2)若此次比賽的前五名成績中有名男生和名女生,如果從他們中任選人作為獲獎代表發(fā)言,請利用表格或畫樹狀圖求恰好選中男女的概率.
【答案】(1)50;;補圖見解析;(2).
【解析】
(1)利用比賽成績在的人數(shù)除以所占的百分比即可求出參加本次比賽的選手的人數(shù),然后利用總?cè)藬?shù)乘比賽成績在所占的百分比,即可求出成績在的人數(shù),從而求出成績在的人數(shù)和成績在的人數(shù),最后根據(jù)中位數(shù)的定義即可求出中位數(shù);
(2)根據(jù)題意,畫出樹狀圖,然后根據(jù)概率公式求概率即可.
解:(1),
所以參加本次比賽的選手共有人,
頻數(shù)直方圖中“”這兩組的人數(shù)為人,
所以頻數(shù)直方圖中“”這一組的人數(shù)為人
“”這一組的人數(shù)為人
中位數(shù)是第和第位選手成績的平均值,即在“”分?jǐn)?shù)段
故答案為:;;
補全條形統(tǒng)計圖如下所示:
(2)畫樹狀圖為:
共有種等可能的結(jié)果數(shù),其中恰好選中男女的結(jié)果數(shù)為,所以恰好選中男女的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有紅、黑兩種顏色的球共60只,這些球除顏色外其余完全相同.為了估計紅球和黑球的個數(shù),七(2)班的數(shù)學(xué)學(xué)習(xí)小組做了摸球?qū)嶒灒麄儗⑶驍噭蚝,從盒子里隨機摸出一個球記下顏色,再把球放回盒子中,多次重復(fù)上述過程,得到表中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 50 | 100 | 300 | 500 | 800 | 1000 |
摸到紅球的次數(shù)m | 14 | 33 | 95 | 155 | 241 | 298 |
摸到紅球的頻率 | 0.28 | 0.33 | 0.317 | 0.31 | 0.301 | 0.298 |
請估計:當(dāng)次數(shù)n足夠大時,摸到紅球的頻率將會接近_____.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.
(1)當(dāng)⊙O半徑為1時,
①在中,⊙O的環(huán)繞點是___________;
②直線y=2x+b與x軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;
(2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,點E為AC延長線上一點,且∠BAC=2∠CDE.
(1)求證:DE是⊙O的切線;
(2)若cosB=,CE=2,求DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣4、3、5這三個數(shù)中,隨機抽取一個數(shù),記為a,那么,使關(guān)于x的方程x2+4x+a=0有解,且使關(guān)于x的一次函數(shù)y=2x+a的圖象與x軸、y軸圍成的三角形面積恰好為4的概率_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在函數(shù)的圖象上,矩形的邊在軸上,是對角線的中點,函數(shù)的圖象經(jīng)過兩點,點的橫坐標(biāo)為,點的橫坐標(biāo)為,解答下列問題:
(1)求反比例函數(shù)的解析式;
(2)求點的坐標(biāo)(用表示);
(3)當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)某海域有A,B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點:三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家健身俱樂部收費標(biāo)準(zhǔn)為180元/次,若購買會員年卡,可享受如下優(yōu)惠:
會員年卡類型 | 辦卡費用(元) | 每次收費(元) |
A類 | 1500 | 100 |
B類 | 3000 | 60 |
C類 | 4000 | 40 |
例如,購買A類會員年卡,一年內(nèi)健身20次,消費元,若一年內(nèi)在該健身俱樂部健身的次數(shù)介于50-60次之間,則最省錢的方式為( )
A.購買A類會員年卡B.購買B類會員年卡
C.購買C類會員年卡D.不購買會員年卡
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com