【題目】如圖,在矩形ABCD中,BC=4,AB=3,經(jīng)過點B和點D的兩個動圓均與AC相切,且與AB、BC、AD、DC分別交于點G、H、E、F,則EF+GH的最小值是( )
A.3B.4C.4.8D.5
【答案】C
【解析】
如圖,設(shè)GH的中點為O,過O點作OM⊥AC,過B點作BN⊥AC,垂足分別為M、N,根據(jù)∠B=90°可知,點O為過B點的圓的圓心,OM為⊙O的半徑,BO+OM為直徑,可知BO+OM≥BN,故當(dāng)BN為直徑時,直徑的值最小,即直徑GH也最小,同理可得EF的最小值.
如圖,設(shè)GH的中點為O,
過O點作OM⊥AC,過B點作BN⊥AC,垂足分別為M、N,
在Rt△ABC中,BC=4,AB=3,
∴AC==5,
由面積法可知,BNAC=ABBC,
解得BN=2.4,
∵∠B=90°,
∴GH為⊙O的直徑,點O為過B點的圓的圓心,
∵⊙O與AC相切,
∴OM為⊙O的半徑,
∴BO+OM為直徑,
又∵BO+OM≥BN,
∴當(dāng)BN為直徑時,直徑的值最小,
此時,直徑GH=BN=2.4,
同理可得:EF的最小值為2.4,
∴EF+GH的最小值是4.8.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)了統(tǒng)計知識后,小紅就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:
(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應(yīng)的圓心角的度數(shù).
(2)若由3名“喜歡乘車”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊參加一項活動,現(xiàn)欲從中選出2人擔(dān)任組長(不分正副),求出2人都是“喜歡乘車”的學(xué)生的概率,(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x | 200﹣2x |
已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某單位要建一個面積為48 m2的小倉庫,小倉庫有一邊靠墻(墻長10m),并在與墻平行的一邊開一道寬1 m的門,現(xiàn)有能圍成19 m的木板,求小倉庫的長與寬?
(注意:倉庫靠墻的那一邊不能超過墻長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB=AC,D是優(yōu)弧BC上的一個動點,連結(jié)AD交BC于點E,連結(jié)BD.
(1)若AE=2,DE=8,求AC的長;
(2)若D是優(yōu)弧BC上中點時,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將小球沿地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度y(m)與它的飛行時間x(s)滿足二次函數(shù)關(guān)系,y與x的幾組對應(yīng)值如表所示:
(1)求y關(guān)于x的函數(shù)解析式(不要求寫x的取值范圍);
(2)問:小球的飛行高度能否達(dá)到20.5m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四個點,∠APC=∠CPB=60°.
(1)求證:PA+PB=PC;
(2)若BC=,點P是劣弧AB上一動點(異于A、B),PA、PB是關(guān)于x的一元二次方程x2﹣mx+n=0的兩根,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中對 600 名畢業(yè)生中考體育測試坐位體前屈成績進(jìn)行整理,繪制成 如下不完整的統(tǒng)計圖:
根據(jù)統(tǒng)計圖,回答下列問題。
(1)請將條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,b= ,得 8 分所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)在本次調(diào)查的學(xué)生中,隨機抽取 1 名男生,他的成績不低于 9 分的概率為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com