【題目】某商城經(jīng)銷(xiāo)甲、乙兩種商品,甲種商品每件進(jìn)價(jià)12元,售價(jià)20元;乙種商品每件進(jìn)價(jià)28元,
售價(jià)40元.商城用2288元購(gòu)進(jìn)了甲、乙兩種商品共100件.
(1)求購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)若商城對(duì)商品的售價(jià)進(jìn)行調(diào)整,甲種商品在原售價(jià)的基礎(chǔ)上上調(diào)(a大于0)出售,乙種商品在原售價(jià)基礎(chǔ)上下調(diào)1.5出售.為保障商城在銷(xiāo)售這100件商品所獲得的利潤(rùn)不低于728無(wú),求a的最大值.
【答案】(1)甲32件,乙68件;(2)a的最大值為10
【解析】
(1)設(shè)購(gòu)進(jìn)甲商品x件,乙商品100-x件,然后列出方程求解即可;
(2)根據(jù)題意列出不等式,求出a的取值范圍即可.
解:(1)設(shè)購(gòu)進(jìn)甲商品x件,乙商品100-x件,
,
解得:x=32,
乙商品:100-32=68(件),
∴購(gòu)進(jìn)甲商品32件,乙商品68件;
(2),
解得:,即,
∴a的最大值為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC.將△ABC沿著BC方向平移得到△DEF,其中點(diǎn)E在邊BC上,DE與AC相交于點(diǎn)O.連接AE、DC、AD,當(dāng)點(diǎn)E在什么位置時(shí),四邊形AECD為矩形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,其中記載:“今有甲、乙二人,持錢(qián)各不知數(shù).甲得乙中半,可滿(mǎn)四十八;乙得甲太半,亦滿(mǎn)四十八。問(wèn)甲、乙二人原持錢(qián)各幾何?”譯文:“甲,乙兩人各有若干錢(qián),如果甲得到乙所有錢(qián)的一半,那么甲共有錢(qián)48文,如果乙得到甲所有錢(qián)的,那么乙也共有錢(qián)48文,問(wèn)甲、乙二人原來(lái)各有多少錢(qián)?”
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①表示一個(gè)時(shí)鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn),當(dāng)鐘面顯示3點(diǎn)30分時(shí),分針垂直于桌面,點(diǎn)距離桌面的高度為公分,圖②表示鐘面顯示3點(diǎn)45時(shí),點(diǎn)距桌面的高度為公分,若鐘面顯示3點(diǎn)55時(shí),點(diǎn)距離桌面的高度為__________公分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( )
A. 2cm2B. 4cm2C. 4cm2D. πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線(xiàn)BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:△AEB≌△CFD;
(2)當(dāng)∠ABE= 度時(shí),四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn)與y軸交于點(diǎn)C,⊙C的半徑為,P為⊙C上一動(dòng)點(diǎn).
(1)點(diǎn)B,C的坐標(biāo)分別為B( ),C( );
(2)當(dāng)P點(diǎn)運(yùn)動(dòng)到(-1,-2)時(shí),判斷PB與⊙C的位置關(guān)系,并說(shuō)出理由;
(3)是否存在點(diǎn)P,使得△PBC是以BC為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ACB中,∠ACB=90°,點(diǎn)D為AB上一點(diǎn).
(1)如圖1,若CD⊥AB,求證:CD2=ADDB;
(2)如圖2,若AC=BC,EF⊥CD于H,EF與BC交于E,與AC交于F,且=,求的值;
(3)如圖3,若AC=BC,點(diǎn)H在CD上,且∠AHD=45°,CH=3DH,直接寫(xiě)出tan∠ACH的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com