【題目】如圖,在四邊形ABCD中,ADBCAD12cm,BC15cm,點P自點AD1cm/s的速度運動,到D點即停止.點Q自點CB2cm/s的速度運動,到B點即停止,點P,Q同時出發(fā),設運動時間為ts).

1)用含t的代數(shù)式表示:

AP   ;DP   ;BQ   ;CQ   

2)當t為何值時,四邊形APQB是平行四邊形?

3)當t為何值時,四邊形PDCQ是平行四邊形?

【答案】(1)t,12t,152t,2t2t5s時四邊形APQB是平行四邊形(3)當t4s時,四邊形PDCQ是平行四邊形

【解析】

1)根據(jù)速度、路程以及時間的關系和線段之間的數(shù)量關系,即可求出AP,DP,BQ,CQ的長;

2)當APBQ時,四邊形APQB是平行四邊形,建立關于t的一元一次方程方程,解方程求出符合題意的t值即可;

3)當PDCQ時,四邊形PDCQ是平行四邊形;建立關于t的一元一次方程方程,解方程求出符合題意的t值即可.

解:(1AP=t,DP =12tBQ=152t,CQ=2t;

2)根據(jù)題意有APt,CQ2tPD12t,BQ152t

∵AD∥BC,

APBQ時,四邊形APQB是平行四邊形,

∴t152t,解得t5,

∴t5s時四邊形APQB是平行四邊形;

3)由APtcmCQ2tcm,

∵AD12cm,BC15cm

∴PDADAP12t,

如圖1∵AD∥BC,

PDQC時,四邊形PDCQ是平行四邊形.

即:12t2t,

解得t4s

t4s時,四邊形PDCQ是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結論:

①∠AOB=90°+C;AE+BF=EF;③當∠C=90°時,E,F分別是ACBC的中點;④若OD=a,CE+CF=2b,則SCEF=ab其中正確的是(  )

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號);

;②;③;④;

(2)和諧分式化成一個整式與一個分子為常數(shù)的分式的和的形式為:_______(要寫出變形過程);

(3)應用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球恰好在點C處截住了小球如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點M,N,使AMN周長最小時,則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE=   

(2)設∠BAC=α,∠DCE=β:

如圖1,當點D在線段BC的延長線上移動時,αβ之間有什么數(shù)量關系?請說明理由;

當點D在直線BC上(不與B、C重合)移動時,αβ之間有什么數(shù)量關系?請直接寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚棋子放在⊙O上的點A處,通過摸球來確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個標號分別為1,2,3的相同小球.充分攪勻后從中隨機摸出1個,記下標號后放回袋中并攪勻,再從中隨機摸出1個,若摸出的兩個小球標號之積是m,就沿著圓周按逆時針方向走m步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹狀圖,分別求出棋子走到A、B、C、D點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于 的一元二次方程 的兩個根,且OA>OB

(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標,并判斷△AOE與△DAO是否相似?請說明理由

查看答案和解析>>

同步練習冊答案