【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2,b2,c2的長為邊的三條線段能組成一個(gè)三角形
②以, , 的長為邊的三條線段能組成一個(gè)三角形
③以a+b,c+h,h的長為邊的三條線段能組成直角三角形
④以, , 的長為邊的三條線段能組成直角三角形
其中所有正確結(jié)論的序號(hào)為______.
【答案】②③.
【解析】解:(1)直角三角形的三條邊滿足勾股定理a2+b2=c2,因而以a2,b2,c2的長為邊的三條線段不能滿足兩邊之和>第三邊,故不能組成一個(gè)三角形,故錯(cuò)誤;
(2)直角三角形的三邊有a+b>c(a,b,c中c最大),而在, , 三個(gè)數(shù)中最大,如果能組成一個(gè)三角形,則有+>成立,即 ,即,(由a+b>c),則不等式成立,從而滿足兩邊之和>第三邊,則以, , 的長為邊的三條線段能組成一個(gè)三角形,故正確;
(3)a+b,c+h,h這三個(gè)數(shù)中c+h一定最大,(a+b)2+h2=a2+b2+2ab+h2,(c+h)2=c2+h2+2ch
又∵2ab=2ch=4S△ABC
∴(a+b)2+h2=(c+h)2,根據(jù)勾股定理的逆定理
即以a+b,c+h,h的長為邊的三條線段能組成直角三角形.故正確;
(4)若以, , 的長為邊的3條線段能組成直角三角形,假設(shè)a=3,b=4,c=5.∵( )2+()2≠()2,∴以這三個(gè)數(shù)的長為線段不能組成直角三角形,故錯(cuò)誤.
故答案為:②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)將△ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫出平移后的△A1B1C1。
(2)若△ABC內(nèi)有一點(diǎn)P(a,b),則經(jīng)過(1)中的兩次變換后點(diǎn)P的坐標(biāo)變?yōu)?/span>_____________
(3)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AF=BE,AE與DF相交于點(diǎn)O.
(1)求證:△DAF≌△ABE;
(2)寫出線段AE、DF的數(shù)量和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,線段AB在x軸的正半軸上移動(dòng),且AB=1,過點(diǎn)A、B作y軸的平行線分別交函數(shù)y1=(x>0)與y2=(x>0)的圖像于C、E和D、F,設(shè)點(diǎn)A的橫坐標(biāo)為m (m>0).
(1)連接OC、OE,則△OCE面積為 ;
(2)連接CF,當(dāng)m為何值時(shí),四邊形ABFC是矩形;
(3)連接CD、EF,判斷四邊形CDFE能否是平行四邊形,并說明理由;
(4)如圖2,經(jīng)過點(diǎn)B和y軸上點(diǎn)G(0,4)作直線BG交直線AC于點(diǎn)H,若點(diǎn)H的縱坐標(biāo)為正整數(shù),請求出整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線相交于點(diǎn),,點(diǎn)是直線上的一個(gè)定點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),若以點(diǎn),,為頂點(diǎn)的三角形是等腰三角形,則的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個(gè)中,40°,,在上取一點(diǎn),延長到,使得在第2個(gè)中,;在上取一點(diǎn),延長到,使得在第3個(gè)中,;…,按此做法進(jìn)行下去,第3個(gè)三角形中以為頂點(diǎn)的內(nèi)角的度數(shù)為_____; 第個(gè)三角形中以為頂點(diǎn)的內(nèi)角的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,以點(diǎn) A 為圓心,AB 長為半徑畫弧交 AD 于點(diǎn) F,再分別以點(diǎn) B、F 為圓心,大于BF 的相同長為半徑畫弧,兩弧交于點(diǎn) P,連接 AP 并延長交 BC 于點(diǎn) E,連接 EF.
(1)根據(jù)以上尺規(guī)作圖的過程,證明四邊形 ABEF 是菱形;
(2)若菱形 ABEF 的邊長為 2,AE= 2 ,求菱形 ABEF 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解:根據(jù)算術(shù)平方根的意義,由,得(2x-y)2=9,所以2x-y=3.①(第一步)
根據(jù)立方根的意義,由,得x-2y=-3.②(第二步)
解得x=3,y=3.
把x、y的值代入分式中,得.(第三步)
上述解答有兩處錯(cuò)誤,一處是___________步,忽視了___________;另一處是步___________,忽視了___________.請寫出正確的解答過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com