【題目】、是半徑為的上的兩條弦,且,,那么,的弦心距__________,圓周角所對(duì)的弧等于__________.
【答案】 或
【解析】
(1)作OF⊥AC于F,連接OA,根據(jù)垂徑定理求出AF,根據(jù)勾股定理計(jì)算即可得出結(jié)論;
(2)連接OA,過(guò)O作OE⊥AB于E,OF⊥AC于F,根據(jù)垂徑定理求出AE、FA值,根據(jù)解直角三角形的知識(shí)求出∠OAB和∠OAC,然后分兩種情況求出∠BAC,再根據(jù)弧長(zhǎng)公式計(jì)算即可.
解:(1) 如圖,
作OF⊥AC于F,連接OA,則AF= AC=
在Rt△OAF中,OF= =1,
故答案為1;
(2)有兩種情況:
①如圖所示:連接OA,過(guò)O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE= ,AF=CF=,
cos∠OAE==,cos∠OAF==,
∴∠OAE=45°,∠OAF=30°,
∴∠BAC=30°+45°=75°,
∴∠BOC=150°,
∴圓周角所對(duì)的弧長(zhǎng)==;
②如圖所示:
連接OA,過(guò)O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE= ,AF=CF=,
cos∠OAE==,cos∠OAF==,
∴∠OAE=45°,∠OAF=30°,
∴∠BAC=45°30°=15°,
∴∠BOC=30°,
∴圓周角所對(duì)的弧長(zhǎng)==;
故答案為或,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光線從空氣射入水中會(huì)發(fā)生折射現(xiàn)象,發(fā)生折射時(shí),滿足的折射定律如圖①所示:折射率(代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設(shè)計(jì)了圖②所示的實(shí)驗(yàn);通過(guò)細(xì)管可以看見(jiàn)水底的物塊,但從細(xì)管穿過(guò)的直鐵絲,卻碰不上物塊,圖③是實(shí)驗(yàn)的示意圖,點(diǎn)A,C,B在同一直線上,測(cè)得,則光線從空射入水中的折射率n等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)上周末對(duì)公園鐘樓(AB)的高度進(jìn)行了測(cè)量,如圖,他站在點(diǎn)D處測(cè)得鐘樓頂部點(diǎn)A的仰角為67°,然后他從點(diǎn)D沿著坡度為i=1:的斜坡DF方向走20米到達(dá)點(diǎn)F,此時(shí)測(cè)得建筑物頂部點(diǎn)A的仰角為45°.已知該同學(xué)的視線距地面高度為1.6米(即CD=EF=1.6米),圖中所有的點(diǎn)均在同一平面內(nèi),點(diǎn)B、D、G在同一條直線上,點(diǎn)E、F、G在同一條直線上,AB、CD、EF均垂直于BG.則鐘樓AB的高約為?(精確到0.1)(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.
(1)求證:△DAC∽△EBC;
(2)求△ABC與△DEC的面積比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校七年級(jí)學(xué)生的英語(yǔ)口語(yǔ)水平,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行英語(yǔ)口語(yǔ)測(cè)試,學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)定為A、B、C、D四個(gè)等級(jí),并把測(cè)試成績(jī)繪成如圖所示的兩個(gè)統(tǒng)計(jì)圖表.
七年級(jí)英語(yǔ)口語(yǔ)測(cè)試成績(jī)統(tǒng)計(jì)表
成績(jī)分 | 等級(jí) | 人數(shù) |
A | 12 | |
B | m | |
C | n | |
D | 9 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)本次被抽取參加英語(yǔ)口語(yǔ)測(cè)試的學(xué)生共有多少人?
(2)求扇形統(tǒng)計(jì)圖中C級(jí)的圓心角度數(shù);
(3)若該校七年級(jí)共有學(xué)生640人,根據(jù)抽樣結(jié)課,估計(jì)英語(yǔ)口語(yǔ)達(dá)到B級(jí)以上包括B級(jí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“書(shū)香校園”活動(dòng)中,某校為了解學(xué)生家庭藏書(shū)情況,隨機(jī)抽取本校部分學(xué)生進(jìn)行調(diào)查,并繪制成部分統(tǒng)計(jì)圖表如下:
類別 | 家庭藏書(shū)m本 | 學(xué)生人數(shù) |
A | 0≤m≤25 | 20 |
B | 26≤m≤50 | a |
C | 51≤m≤75 | 50 |
D | m≥76 | 66 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)該調(diào)查的樣本容量為 ,a= ;
(2)隨機(jī)抽取一位學(xué)生進(jìn)行調(diào)查,剛好抽到A類學(xué)生的概率是 ;
(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中家庭藏書(shū)不少于76本的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生“第二課堂“活動(dòng)的選修情況,對(duì)報(bào)名參加A.跆拳道,B.聲樂(lè),C.足球,D.古典舞這四項(xiàng)選修活動(dòng)的學(xué)生(每人必選且只能選修一項(xiàng))進(jìn)行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有 人;在扇形統(tǒng)計(jì)圖中,B所對(duì)應(yīng)的扇形的圓心角的度數(shù)是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查選修古典舞的學(xué)生中有4名團(tuán)員,其中有1名男生和3名女生,學(xué)校想從這4人中任選2人進(jìn)行古典舞表演.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求被選中的2人恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是長(zhǎng)沙九龍倉(cāng)國(guó)際金融中心,位于長(zhǎng)沙市黃興路與解放路交會(huì)處的東北角,投資160億元人民幣,總建筑面積達(dá)98萬(wàn)平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點(diǎn)測(cè)得A的仰角為α,tanα=,在頂端E點(diǎn)測(cè)得A的仰角為45°,AE=140m
(1)求兩樓之間的距離CD;
(2)求發(fā)射塔AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)對(duì)隊(duì)員進(jìn)行定點(diǎn)投籃測(cè)試,每人每天投籃10次,現(xiàn)對(duì)甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個(gè))進(jìn)行統(tǒng)計(jì),結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過(guò)計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)如果綜合考慮平均成績(jī)和成績(jī)穩(wěn)定性兩方面的因素,從甲、乙兩名隊(duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰(shuí)?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com