【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,AD=5,求OC的值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對(duì)應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對(duì)應(yīng)邊成比例,求得AD:OC的值.
試題解析:(1)連結(jié)DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB. 3分
又∵CO=CO, OD=OB
∴△COD≌△COB(SAS) 4分
∴∠CDO=∠CBO=90°.
又∵點(diǎn)D在⊙O上,
∴CD是⊙O的切線.
(2)∵△COD≌△COB.
∴CD=CB.
∵DE=2BC,
∴ED=2CD.
∵AD∥OC,
∴△EDA∽△ECO.
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點(diǎn),∠EDF=90°,∠EDF繞D點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長(zhǎng)線)于E、F.當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE⊥AC于E時(shí)(如圖1),易證.當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE和AC不垂直時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立? 若成立,請(qǐng)給予證明;若不成立,,,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=8,點(diǎn)P為AB的中點(diǎn),E為BC上一動(dòng)點(diǎn),過(guò)P點(diǎn)作FP⊥PE交AC于F點(diǎn),經(jīng)過(guò)P、E、F三點(diǎn)確定⊙O.
(1)試說(shuō)明:點(diǎn)C也一定在⊙O上.
(2)點(diǎn)E在運(yùn)動(dòng)過(guò)程中,∠PEF的度數(shù)是否變化?若不變,求出∠PEF的度數(shù);若變化,說(shuō)明理由.
(3)求線段EF的取值范圍,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點(diǎn)A放在⊙O上,且AC與⊙O相切于點(diǎn)A(如圖1),將△ABC從點(diǎn)A開(kāi)始,繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點(diǎn)E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過(guò)程中,有以下幾個(gè)量:①弦EF的長(zhǎng);②的長(zhǎng);③∠AFE的度數(shù);④點(diǎn)O到EF的距離.其中不變的量是___________________(填序號(hào));
(2)當(dāng)α=________°時(shí),BC與⊙O相切(直接寫(xiě)出答案);
(3)當(dāng)BC與⊙O相切時(shí),求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需 分鐘到達(dá)終點(diǎn)B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線在坐標(biāo)系中的位置如圖所示,它與軸、軸的交點(diǎn)分別為、,點(diǎn)是其對(duì)稱軸上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①;②是的一個(gè)根;③周長(zhǎng)的最小值是.其中正確的是( )
A. 僅有①② B. 僅有②③ C. 僅有①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 希望小學(xué)初一年級(jí)的名同學(xué)中,至少有兩個(gè)生日相同的概率是
B. 在投擲骰子時(shí),連投兩次點(diǎn)數(shù)相同的概率與連投兩次點(diǎn)數(shù)都為的概率相等
C. 我們小組共名同學(xué),他們中肯定有兩人在同一月過(guò)生日
D. 一個(gè)游戲的中獎(jiǎng)率是,買張獎(jiǎng)券,一定會(huì)中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);
(2)確定C港在A港的什么方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫(huà)出將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)畫(huà)出將△ABC繞原點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到A1與點(diǎn)A2距離之和最小,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com