(2009•武漢)如圖,已知O是四邊形ABCD內(nèi)一點,OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是( )

A.70°
B.110°
C.140°
D.150°
【答案】分析:由已知及四邊形內(nèi)角和知∠DAB+∠DCB=220°,由等腰三角形的性質(zhì)知∠OAB+∠OCB=70°,所以即可求得∠DAO+∠DCO的度數(shù).
解答:解:根據(jù)四邊形的內(nèi)角和定理可得:
∠DAB+∠DCB=220°,
∵OA=OB=OC,∠ABC=∠ADC=70°,
∴∠OAB=∠OBA,∠OCB=∠OBC,
∴∠OAB+∠OCB=70°,
∴∠DAO+∠DCO=220°-70°=150度.
故選D.
點評:本題考查四邊形內(nèi)角和的定理及等腰三角形的性質(zhì),解題時要將二者有機的結(jié)合在一起.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省嘉興市海寧市鹽官片中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•武漢)如圖,拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)已知點D(m,m+1)在第一象限的拋物線上,求點D關(guān)于直線BC對稱的點的坐標(biāo);
(3)在(2)的條件下,連接BD,點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•武漢)如圖,拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)已知點D(m,m+1)在第一象限的拋物線上,求點D關(guān)于直線BC對稱的點的坐標(biāo);
(3)在(2)的條件下,連接BD,點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省徐州市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2009•武漢)如圖,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點,則不等式x>kx+b>-2的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.3.2.一元一次不等式(組)(解析版) 題型:填空題

(2009•武漢)如圖,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點,則不等式x>kx+b>-2的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•武漢)如圖,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點,則不等式x>kx+b>-2的解集為   

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹