【題目】已知二次函數(shù)的表達(dá)式為

試判斷該二次函數(shù)的圖象與軸交點(diǎn)的個(gè)數(shù)?并說(shuō)明理由.

此二次函數(shù)的圖象與函數(shù)的圖象的一個(gè)交點(diǎn)在軸上,求的值.

【答案】(1)詳見(jiàn)解析;(2),

【解析】

(1)要判斷二次函數(shù)與x軸的交點(diǎn)的個(gè)數(shù),即要判斷方程x2﹣(2m﹣1)x+m2m=0的實(shí)數(shù)根的情況,利用根的判別式進(jìn)行判斷即可;(2)由題意得,當(dāng)x=0時(shí),二次函數(shù)的函數(shù)值與一次函數(shù)的函數(shù)值相等,列方程求解即可.

(1)y=0,x2﹣(2m﹣1)x+m2m=0,

∵△=b2﹣4ac=[﹣(2m﹣1)] 2﹣4(m2m)=1>0,

∴方程x2﹣(2m﹣1)x+m2m=0有兩個(gè)不相等的實(shí)數(shù)根

∴二次函數(shù)y=x2﹣(2m﹣1)x+m2mx軸有兩個(gè)交點(diǎn);

(2)x=0,則m2m=m+4,

解得:m1=1+m2=1﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=m.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為(  )

A. 193 B. 194 C. 195 D. 196

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、兩點(diǎn)分別在邊、上,,相交于點(diǎn),若的面積為,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),是拋物線外一點(diǎn),在拋物線的對(duì)稱(chēng)軸上存在一點(diǎn),使得值最大,則點(diǎn)坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若ABC內(nèi)一點(diǎn)P,滿(mǎn)足∠PAB=∠PBC=∠PCAα,則稱(chēng)點(diǎn)PABC的布洛卡點(diǎn).通過(guò)研究一些特殊三角形中的布洛卡點(diǎn),得到如下兩個(gè)結(jié)論:

①若∠BAC90°,則必有∠APC90°;②若ABAC,則必有∠APB=∠BPC

對(duì)于這兩個(gè)結(jié)論,下列說(shuō)法正確的是(  )

A.①對(duì),②錯(cuò)B.①錯(cuò),②對(duì)C.①,②均錯(cuò)D.①,②均對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),給定∠AOB=60°,及OB邊上一點(diǎn)C,如圖所示.到射線OA,OB距離相等的所有點(diǎn)組成圖形G,線段OC的垂直平分線交圖形G于點(diǎn)D,連接CD

1)依題意補(bǔ)全圖形;直接寫(xiě)出∠DCO的度數(shù);

2)過(guò)點(diǎn)DOD的垂線,交OA于點(diǎn)E,OB于點(diǎn)F.求證:CF=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,已知中,,,的頂點(diǎn)、分別在邊、上,當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),隨之在上運(yùn)動(dòng),的形狀始終保持不變,在運(yùn)動(dòng)的過(guò)程中,點(diǎn)到點(diǎn)的最小距離為( )

A. 5 B. 7 C. 12 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一張矩形紙片,長(zhǎng)10cm,寬6cm,在它的四角各減去一個(gè)同樣的小正方形,然后折疊成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長(zhǎng).設(shè)剪去的小正方形邊長(zhǎng)是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案