【題目】某學校為了增強學生體質(zhì),決定開放以下體育課外活動項目:A.籃球、B.乒乓球、C.跳繩、D.踢毽子.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,其中A所在扇形的圓心角為30°,則在被調(diào)查的學生中選擇跳繩的人數(shù)是 .
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.
(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;
①求證:點F是AD的中點;
②判斷BE與CF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)如圖2,把△DEC繞點C順時針旋轉(zhuǎn)α角(0<α<90°),點F是AD的中點,其他條件不變,判斷BE與CF的關(guān)系是否不變?若不變,請說明理由;若要變,請求出相應的正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖填空:
(1)∵∠1=∠A(已知),
∴_________(______________________);
(2)∵∠1=∠D(已知),
∴________(________________________);
(3)∵______=∠F(已知),
∴AC∥DF(______________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為8cm2 , AP垂直∠B的平分線BP于P,則△PBC的面積為( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=90.E是AC邊上的一點,延長BA至D,使AD=AE,連接DE,CD.
(l)圖中是否存在兩個三角形全等?如果存在請寫出哪兩個三角形全等,并且證明;如果不存在,請說明理由;
(2)若∠CBE=30,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數(shù)的點,其順序為(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根據(jù)這個規(guī)律,第2 018個點的坐標為( )
A. (45,9) B. (45,11) C. (45,7) D. (46,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com