【題目】二次函數y=ax2+bx+c(a≠0)圖象如圖,下列結論:① abc>0;② 2a+b=0;③ 當m≠1時,a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正確的有( 。
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
【答案】D
【解析】試題分析:∵拋物線開口向下,
∴a<0,
∵拋物線對稱軸為性質x=-=1,
∴b=-2a>0,即2a+b=0,所以②正確;
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,所以①錯誤;
∵拋物線對稱軸為性質x=1,
∴函數的最大值為a+b+c,
∴當m≠1時,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正確;
∵拋物線與x軸的一個交點在(3,0)的左側,而對稱軸為性質x=1,
∴拋物線與x軸的另一個交點在(-1,0)的右側
∴當x=-1時,y<0,
∴a-b+c<0,所以④錯誤;
∵ax12+bx1=ax22+bx2,
∴ax12+bx1-ax22-bx2=0,
∴a(x1+x2)(x1-x2)+b(x1-x2)=0,
∴(x1-x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,即x1+x2=-,
∵b=-2a,
∴x1+x2=2,所以⑤正確.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,15個形狀大小完全相同的菱形組成網格,菱形的頂點稱為格點. 已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若E也在格點上,且∠AED=∠ACD,則cos∠AEC=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=與x軸、y軸分別交于A、B兩點,P是以C(0,2)為圓心,2為半徑的圓上一動點,連結PA、PB.則△PAB面積的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點E,經過B,D,E三點作⊙O.
(1)求證:AC與⊙O相切于D點;
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖所示.請解答:
(1)點A、C的坐標分別是 、 ;
(2)畫出△ABC繞點A按逆時針方向旋轉90°后的△AB'C';
(3)在(2)的條件下,求點C旋轉到點C'所經過的路線長(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個矩形自行車場地ABCD,在AB和BC邊各有一個2米寬的小門(不用鐵柵欄)設矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長為40米,寫出y與x的函數關系式,并求出自變量x的取值范圍:
(2)在(1)的條件下,求S與x的函數關系式,并求出怎樣圍才能使矩形場地的面積為192平方米?
(3)在(2)的條件下,請直接寫出當矩形場地的面積大于192平方米時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數字為x,小張在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中作圖:①分別以點B,C為圓心,BC長為半徑畫弧,分別交AD于點H,G;②分別以點B,C為圓心,大于BC的一半長為半徑畫弧,兩弧相交于點E,F;③作直線EF,交AD于點P.下列結論不一定成立的是( )
A.BC=BHB.CG=AD
C.PB=PCD.GH=2AB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與圓弧相切,求AT的長.
(3)Q為優(yōu)弧上一點,當△AOQ面積最大時,請直接寫出∠BOQ的度數為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com