【題目】如圖,AC⊥CB,垂足為C點(diǎn),AC=CB=8cm,點(diǎn)Q是AC的中點(diǎn),動(dòng)點(diǎn)P由B點(diǎn)出發(fā),沿射線BC方向勻速移動(dòng).點(diǎn)P的運(yùn)動(dòng)速度為2cm/s.設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.為方便說明,我們分別記三角形ABC面積為S,三角形PCQ的面積為S1,三角形PAQ的面積為S2,三角形ABP的面積為S3.
(1)S3= cm2(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒,S1=S,說明理由;
(3)請(qǐng)你探索是否存在某一時(shí)刻,使得S1=S2=S3?若存在,求出t值;若不存在,說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2③,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3)④,讀作“-3 的圈 4 次方”.
一般地,把(a≠0)記作a,記作“a 的圈c次方”.
(1)直接寫出計(jì)算結(jié)果:2③= ,(-3)④ = ,⑤= .
(2)計(jì)算 24÷23 + (-8)×2③.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)八年級(jí)部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行了質(zhì)量監(jiān)測(cè)(分?jǐn)?shù)為整數(shù),滿分100分),根據(jù)質(zhì)量監(jiān)測(cè)成績(jī)(最低分為53分)分別繪制了如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖
分?jǐn)?shù) | 59.5分以下 | 59.5分以上 | 69.5分以上 | 79.5分以上 | 89.5分以上 |
人數(shù) | 3 | 42 | 32 | 20 | 8 |
(1)求出被調(diào)查的學(xué)生人數(shù),并補(bǔ)全頻數(shù)直方圖;
(2)若全市參加質(zhì)量監(jiān)測(cè)的學(xué)生大約有4500人,請(qǐng)估計(jì)成績(jī)優(yōu)秀的學(xué)生約有多少人?(80分及80分以上為優(yōu)秀)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)C為線段AB上一點(diǎn),AB=12,AC=8,點(diǎn)D為直線AB上一點(diǎn),M、N分別是AB、CD的中點(diǎn),若MN=10,則線段AD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)C.
(1)若點(diǎn)A的坐標(biāo)為(1,2),請(qǐng)你在給出的坐標(biāo)系中畫出ΔABC,設(shè)AB與y軸的交點(diǎn)為D,求的值;
(2)若點(diǎn)A的坐標(biāo)為(a,b)(ab≠0),判斷ΔABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一長(zhǎng)方形休閑廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓的花壇,若圓形的半徑為r米,廣場(chǎng)長(zhǎng)為m米,寬為n米.
(1)請(qǐng)列式表示廣場(chǎng)空地的面積;
(2)若休閑廣場(chǎng)的長(zhǎng)為40米,寬為25米,圓形花壇的半徑為3米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形MNC中.CN=MN= ,將△MNC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點(diǎn)O.
(1)∠NCO的度數(shù)為;
(2)求證:△CAM為等邊三角形;
(3)連接AN,求線段AN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com