【題目】如圖,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長.

【答案】10cm

【解析】

先有∠A=30°,那么∠ABC=60°,結(jié)合BD是角平分線,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所對的直角邊等于斜邊的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.

解:在Rt△ABC中,∠C=90°,∠A=∠30°,

∴∠ABC=60°.

∵BD是∠ABC的平分線,

∴∠ABD=∠CBD=30°.

∴∠ABD=∠BAD,

∴AD=DB,

Rt△CBD中,CD=5cm,∠CBD=30°,

∴BD=10cm.

由勾股定理得,BC=5,

∴AB=2BC=10cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子的長度為25米,斜靠在墻上,梯子低部離墻底端為7米.

1)這個梯子頂端離地面有   米;

2)如果梯子的頂端下滑了4米,那么梯子的底部在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列方程中,解是x=-1的是( ).

A. 2x+1=1 B. 1-2x=1 C. =2 D. 1-x =2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC,∠ACB的平分線相交于點(diǎn)F,過點(diǎn)FDE∥BC,交ABD,交ACE,那么下列結(jié)論:

①△BDF,△CEF都是等腰三角形;

②DE=BD+CE;

③△ADE的周長為AB+AC;

④BD=CE.其中正確的是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y= x2 x﹣3的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,作直線CD,點(diǎn)P是拋物線對稱軸上的一點(diǎn),若以P為圓心的圓經(jīng)過A,B兩點(diǎn),并且和直線CD相切,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.

(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中,裝有10個紅球、2個黃球、8個籃球,它們除顏色外都相同.
(1)求從袋中摸出一個球是紅球的概率;
(2)現(xiàn)從袋中取出若干個紅球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個球是黃球的概率是 ,問取出了多少個紅球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圓⊙O交BC于E點(diǎn),連接DE并延長,交AC于P點(diǎn),交AB延長線于F.
(1)求證:CF=DB;
(2)當(dāng)AD= 時,試求E點(diǎn)到CF的距離.

查看答案和解析>>

同步練習(xí)冊答案