【題目】隨機抽取某城市天的空氣質(zhì)量狀況統(tǒng)計如下:

污染指數(shù)(

天數(shù)(

(其中時,空氣質(zhì)量為優(yōu);時,空氣質(zhì)量為良;時,空氣質(zhì)量為輕微污染)

1)這天中,空氣質(zhì)量為輕微污染的天數(shù)所占的百分數(shù)是多少?

2)估計該城市一年(以天記)中有多少天空氣質(zhì)量到良以上?

3)保護環(huán)境人人有責,請說出一種保護環(huán)境的好方法.

【答案】140%;(2219;(3)減少廢氣的排放.(答案不唯一)

【解析】

( 1 )從題表中可以看出空氣質(zhì)量為輕微污染的天數(shù)為7+4+1=12 ,故其所占的百分比為12÷30× 100%=40%.

( 2 )從題表中可以看出30天中有3+5+10=18天空氣質(zhì)量達到良以上,所以一年中約有

18 ÷30× 365=219(天)空氣質(zhì)量達到良以上.

( 3 ) 減少廢氣的排放.

1)從表中可以看出空氣質(zhì)量為輕微污染的天數(shù)為天,故其占的百分數(shù).

2)空氣質(zhì)量達到良以上,從表中可以看出有天,所以天;

3)減少廢氣的排放.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校課外小組為了解同學們對學校陽光跑操活動的喜歡程度,抽取部分學生進行調(diào)查.被調(diào)查的每個學生按A(非常喜歡)、B(比較喜歡)、C(一般)、D(不喜歡)四個等級對活動評價.1和圖2是該小組采集數(shù)據(jù)后繪制的兩幅統(tǒng)計圖.經(jīng)確認扇形統(tǒng)計圖是正確的,而條形統(tǒng)計圖尚有一處錯誤且并不完整.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)此次調(diào)查的學生人數(shù)為___;

(2)條形統(tǒng)計圖中存在錯誤的是___(A. B.C中的一個),并在圖中加以改正;

(3)在圖2中補畫條形統(tǒng)計圖中不完整的部分;

(4)如果該校有600名學生,那么對此活動非常喜歡比較喜歡的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一次函數(shù) ykx+b,當 1≤x≤4 時,3≤y≤6,則一次函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AEBDC,ABDE,∠A30°,∠E50°,FDE的中點,則∠DBF的度數(shù)等于(

A.10°B.20°C.30°D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有五張正面分別標有數(shù)字﹣2,﹣10,1,2的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程x2﹣2a﹣1x+aa﹣3=0有兩個不相等的實數(shù)根,且以x為自變量的二次函數(shù)y=x2a2+1x﹣a+2的圖象不經(jīng)過點(1,0)的概率是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中∠B=45°,∠C=30°,點DBC邊上任意一點,連接AD,將線段ADA順時針旋轉(zhuǎn)90°,得到線段AE,連接DE

1)如圖1,點E落在BA的延長線上時,∠EDC= (度)直接填空.

2)如圖2,點D在運動過程中,DEAC時,AB=4 ,求DE的值.

3)如圖3,點F為線段DE中點,AB=,求出動點DB運動到C,點F經(jīng)過的路徑長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,先把一矩形紙片上下對折,設(shè)折痕為;如圖②,再把

疊在折痕線上,得到 .過點作,分別交、于點、

1)求證:

2)在圖②中,如果沿直線再次折疊紙片,點能否疊在直線上?請說明理由;

3)在(2)的條件下,若,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點.

(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(2)當BD,AC滿足什么條件時,四邊形EFGH是正方形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在ABC中,∠ACB=90°,點DABC外,連接AD,作DEAB,交BC于點F,AD=AB,AE=AC,連接AF,則DF,BCCF間的等量關(guān)系是 ;

2)如圖2,AB=AD,AC=AE,∠ACB=AED=90°,延長BCDE于點F,寫出DF,BC,CF間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案