【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(/千克)之間的函數(shù)關(guān)系如圖所示:

(1)yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)求每天的銷售利潤W()與銷售價x(/千克)之間的函數(shù)關(guān)系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?

(3)該經(jīng)銷商想要每天獲得168元的銷售利潤,銷售價應(yīng)定為多少?

【答案】(1)yx之間的函數(shù)關(guān)系式y=-2x+60(10≤x≤18);(2)當銷售價為18元時,每天的銷售利潤最大,最大利潤是192;(3)該經(jīng)銷商想要每天獲得168元的銷售利潤,銷售價應(yīng)定為16元.

【解析】(1)根據(jù)題意,設(shè)一次函數(shù)的解析式為y=kx+b,代入圖中的兩組已知的點的坐標(10,40),(18,24),利用消元法解二元一次方程組得出kb的值,即可得出一次函數(shù)的解析式。

(2)利根據(jù)利潤等于一件的利潤×件數(shù),可以得到W關(guān)于x的表達式,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.

(3)將168代入二次函數(shù)的關(guān)系式,解一元二次方程即可,注意自變量x的取值范圍。

(1)設(shè)yx之間的函數(shù)關(guān)系式y=kx+b,(10,40),(18,24)代入得

, 解得,

∴yx之間的函數(shù)關(guān)系式y=-2x+60(10≤x≤18);

(2)W=(x-10)(-2x+60)=-2x2+80x-600,

對稱軸x=20,在對稱軸的左側(cè)y隨著x的增大而增大,

∵10≤x≤18,∴x=18,W最大,最大為192.

即當銷售價為18元時,每天的銷售利潤最大,最大利潤是192

(3)由168=-2x2+80x-600,

解得x1=16,x2=24(不合題意,舍去)

:該經(jīng)銷商想要每天獲得168元的銷售利潤,銷售價應(yīng)定為16元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地方政府決定在相距50kmA、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DAABA,CBABB,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、丙兩地相距500km,一列快車從甲地駛往丙地,途中經(jīng)過乙地;一列慢車從乙地駛往丙地,兩車同時出發(fā),同向而行,折線ABCD表示兩車之間的距離y(km)與慢車行駛的時間為x(h)之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,下列說法不正確的是(  )

A. 甲、乙兩地之間的距離為200 kmB. 快車從甲地駛到丙地共用了2.5 h

C. 快車速度是慢車速度的1.5D. 快車到達丙地時,慢車距丙地還有50 km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求畫圖:(1)如圖1平面上有五個點,按下列要求畫出圖形.

①連接;

②畫直線于點;

③畫出線段的反向延長線;

④請在直線上確定一點,使兩點到點的距離之和最小,并寫出畫圖的依據(jù).

2)有5個大小一樣的正方形制成如圖2所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.(注意:只需添加一個符合要求的正方形,并用陰影表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生數(shù)學(xué)興趣小組為了解本校同學(xué)對上課外補習班的態(tài)度,在學(xué)校抽取了部分同學(xué)進行了問卷調(diào)查,調(diào)查分別為“A﹣非常贊同”、“B﹣贊同”、“C﹣無所謂”、“D﹣不贊同”等四種態(tài)度,現(xiàn)將調(diào)查統(tǒng)計結(jié)果制成了如圖兩幅統(tǒng)計圖,請結(jié)合兩幅統(tǒng)計圖,回答下列問題:

(1)抽取了多少名同學(xué)進行了問卷調(diào)查?

(2)請補全條形統(tǒng)計圖.

(3)持“不贊同”態(tài)度的學(xué)生人數(shù)的百分比所占扇形的圓心角為   度.

(4)若該校有3000名學(xué)生,請你估計該校學(xué)生對持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點P是平行四邊形ABCD對角線AC所在直線上的一個動點(點P不與點AC重合),分別過點A、C向直線BP作垂線,垂足分別為點E、F,點OAC的中點.1)當點P與點O重合時如圖1,易證OE=OF(不需證明)

2)直線BP繞點B逆時針方向旋轉(zhuǎn),當∠OFE=30°時,如圖2、圖3的位置,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?請寫出你對圖2、圖3的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,A=40O,延長ACD,使CD=BC,點PΔABD的內(nèi)心,則∠BPC=

A. 105° B. 110° C. 130° D. 145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地圖書館為了滿足群眾多樣化閱讀的需求,決定購買甲、乙兩種品牌的電腦若干組建電子閱覽室.經(jīng)了解,甲、乙兩種品牌的電腦單價分別3100元和4600元.

(1)若購買甲、乙兩種品牌的電腦共50臺,恰好支出200000元,求甲、乙兩種品牌的電腦各購買了多少臺?

(2)若購買甲、乙兩種品牌的電腦共50臺,每種品牌至少購買一臺,且支出不超過160000元,共有幾種購買方案?并說明哪種方案最省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為直線上一點,平分,則以下結(jié)論正確的有______.(只填序號)①互為余角;②若,則;③;平分

查看答案和解析>>

同步練習冊答案