【題目】如圖,平行四邊形ABCD的頂點A、C在雙曲線y1= 上,B、D在雙曲線y2= 上,k1=2k2(k1>0),AB//y軸,SABCD=24,則k1=.

【答案】8
【解析】解:在ABCD中,AB∥CD,AB=CD(平行四邊形的對應邊平行且相等),故設A(x,y1)、B(x、y2),則根據(jù)反比例函數(shù)的圖象關于原點對稱的性質(zhì)知,C(﹣x,﹣y1)、D(﹣x、﹣y2). ∵A在雙曲線y1= 上,B在雙曲線y2= 上, ∴x= ,x= , ∴ = ; 又∵k1=2k2(k1>0), ∴y1=﹣2y2; ∵SABCD=24, ∴AB|2x|=|y1-y2||2x|=6|y2x|=24, 解得,y2x=±4, ∵雙曲線y2= 位于第一、三象限, ∴k2=4, ∴k1=2k2=8
所以答案是8.
【考點精析】解答此題的關鍵在于理解反比例函數(shù)的性質(zhì)的相關知識,掌握性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大,以及對平行四邊形的性質(zhì)的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校九年級學生舉行朗誦比賽,全年級學生都參加,學校對表現(xiàn)優(yōu)異的學生進行表彰,設置一、二、三等獎各進步獎共四個獎項,賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)九年級(1)班共有名學生;
(2)將條形圖補充完整:在扇形統(tǒng)計圖中,“二等獎”對應的扇形的圓心角度數(shù)是;
(3)如果該九年級共有1250名學生,請估計榮獲一、二、三等獎的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,E是AC上一點,且AE=AB,∠EBC= ∠BAC,以AB為直徑的⊙O交AC于點D,交EB于點F.
(1)求證:BC與⊙O相切;
(2)若AB=8,sin∠EBC= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,下列幾何體中主視圖、左視圖、府視圖都相同的是( )

A.半球
B.圓柱
C.球
D.六棱柱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程,乙工程隊單獨先做10天后,再由甲,乙兩個工程隊合作20天就能完成全部工程,已知甲工程隊單獨完成此工程所需天數(shù)是乙工程隊單獨完成此工程所需天數(shù)的
(1)求:甲,乙工程隊單獨做完成此工程各需多少天?
(2)甲工程隊每天的費用為0.67萬元,乙工程隊每天的費用為0.33萬元,該工程的預算費用為20萬元,若甲,乙工程隊一起合作完成該工程,請問工程費用是否夠用,若不夠用應追加多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

(1)此拋物線的頂點坐標是 ,與x軸的交點坐標是 , ,與y軸交點坐標是 ,對稱軸直線是
(2)在平面直角坐標系中畫出 的圖象;
(3)結合圖象,說明當x取何值時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標;
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3.14)0+|cos30°﹣3|﹣( 2+

查看答案和解析>>

同步練習冊答案