【題目】如圖,在直角坐標(biāo)系中,拋物線(xiàn)y軸交于點(diǎn)D0,3).

1)直接寫(xiě)出c的值;

2)若拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線(xiàn)BC的解析式;

3)已知點(diǎn)P是直線(xiàn)BC上一個(gè)動(dòng)點(diǎn),

當(dāng)點(diǎn)P在線(xiàn)段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)PPE⊥y軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求sx的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;

試探索:在直線(xiàn)BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r⊙P,既與拋物線(xiàn)的對(duì)稱(chēng)軸相切,又與以點(diǎn)C為圓心,半徑為1⊙C相切?如果存在,試求r的值,并直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】1c=3;(2;(3①S=-x2+3x=-(x-)2+1<x<3);當(dāng)x=時(shí),S取得最大值,最大值為;存在點(diǎn)P1),或P2),此時(shí)r1=;點(diǎn)P3),或P4),此時(shí)r2=,理由見(jiàn)解析.

【解析】

1)將點(diǎn)D0,3)直接代入解析式即可;

2)先求出頂點(diǎn)C坐標(biāo)為(1,4),以及與x軸的交點(diǎn)坐標(biāo),即令y=0時(shí),得到點(diǎn)B3,0)代入一次函數(shù)解析式即可求得答案;

3)根據(jù)S=PE·OE,利用P點(diǎn)在線(xiàn)段BC上,可表示出PE,OE,得到S=,變形為頂點(diǎn)式后求出最大值即可.第小問(wèn),根據(jù)兩圓內(nèi)切與外切進(jìn)行分類(lèi)討論,分別用r表示出CQPQ,CP的長(zhǎng)度,再利用勾股定理即可求出r長(zhǎng)度和P點(diǎn)坐標(biāo).

解:(1D03)代入解析式

∴c=3

2)由(1)知拋物線(xiàn)為:

y=-x2+2x+3,配方得y=-x-12+4

頂點(diǎn)C坐標(biāo)為(1,4

y=0,得x1=-1,x2=3

∴ B3,0

設(shè)直線(xiàn)BC解析式為:),把B、C兩點(diǎn)坐標(biāo)代入,

解得

直線(xiàn)BC解析式為

3①∵點(diǎn)Px,y)在的圖象上,

∴PE=x,OE=-2x+6

∴s=PE·OE=

∵x=符合1<x<3

當(dāng)x=時(shí),S取得最大值,最大值為

答:存在.

如圖,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)F,則CF=4,BF=2

過(guò)PPQ⊥CFQ,則Rt△CPQ∽R(shí)t△CBF

,即

∴CQ=2r

當(dāng)⊙P⊙C外切時(shí),CP=r+1

∵CQ2+PQ2=CP2

2r2+r2=r+12

解得r=(r=舍去)

此時(shí)P1),或P2

當(dāng)⊙P⊙C內(nèi)切時(shí),CP=r-1

∵CQ2+PQ2=CP2

2r2+r2=r-12

解得r=r= 舍去)

此時(shí)P3),或P4).

當(dāng)r1=, r2=時(shí),⊙P⊙C相切.

點(diǎn)P的坐標(biāo)為P1),或P2),

P3),或P4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的邊ABy軸上,點(diǎn)D4,4),cosBCD,若反比例函數(shù)yk≠0)的圖象經(jīng)過(guò)平行四邊形對(duì)角線(xiàn)的交點(diǎn)E,則k的值為(

A.14B.7C.8D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰直角△ABC,∠C=90°,AC=2,D為邊AC上一動(dòng)點(diǎn),連結(jié)BD,在射線(xiàn)BD上取一點(diǎn)E使BEBD=AB2.若點(diǎn)DA運(yùn)動(dòng)到C,則點(diǎn)E運(yùn)動(dòng)的路徑長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn)

小明在學(xué)習(xí)魯教版八年級(jí)上冊(cè)97頁(yè)例4時(shí),受到啟發(fā)進(jìn)行如下數(shù)學(xué)實(shí)驗(yàn)操作:

如圖1,取一個(gè)銳角為45°的三角尺,把銳角頂點(diǎn)放在正方形ABCD的頂點(diǎn)D處,將三角尺繞點(diǎn)D旋轉(zhuǎn)一個(gè)角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點(diǎn)E和點(diǎn)F,連接FE,在繞點(diǎn)D旋轉(zhuǎn)過(guò)程中,發(fā)現(xiàn)線(xiàn)段AE,EF,CF滿(mǎn)足EF=AE+CF的數(shù)量關(guān)系,但是不會(huì)進(jìn)行證明,數(shù)學(xué)張老師給他如下的提示:ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DCE’的位置,小明畫(huà)旋轉(zhuǎn)后的圖形,利用全等的知識(shí)證明了出來(lái).你根據(jù)上面的提示畫(huà)出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進(jìn)行證明.

問(wèn)題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長(zhǎng)線(xiàn)于點(diǎn)E和點(diǎn)F,老師問(wèn)題小明此時(shí)AE,EF,CF滿(mǎn)足什么數(shù)量關(guān)系,小明思考后說(shuō)出了正確的結(jié)論.請(qǐng)同學(xué)們直接寫(xiě)出正確結(jié)論(不用寫(xiě)出證明過(guò)程).

拓展延伸

張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗(yàn),解答下面的問(wèn)題:

如圖3已知正方形ABCD,點(diǎn)E在邊AB,點(diǎn)F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,BAADDC,點(diǎn)ECB延長(zhǎng)線(xiàn)上,BEAD,連接AC、AE

求證:AEAC;

ABAC, FBC的中點(diǎn),試判斷四邊形AFCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,如需改造的道路全長(zhǎng)1200米,改造總費(fèi)用不超過(guò)145萬(wàn)元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(08),點(diǎn)C的坐標(biāo)為(60).拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D

1)求拋物線(xiàn)的函數(shù)解析式;

2)點(diǎn)P為線(xiàn)段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線(xiàn)段AC上一個(gè)動(dòng)點(diǎn),AQCP,連接PQ,設(shè)CPm,CPQ的面積為S

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線(xiàn)y=﹣x2+bx+c的對(duì)稱(chēng)軸l上,若存在點(diǎn)F,使DFQ為直角三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ABC=90°,D是直線(xiàn)AB邊上的點(diǎn),AD=BC

1)如圖1,點(diǎn)D在線(xiàn)段AB上,過(guò)點(diǎn)AAFAB,且AF=BD,連接DCDF、CF,試判斷△CDF的形狀并說(shuō)明理由;

2)如圖2,點(diǎn)D在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,點(diǎn)F在點(diǎn)A的左側(cè),其他條件不變,以上結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮和小偉一起參加象棋比賽,他們所在的小組共有5名選手.抽簽袋里有221白共5個(gè)小球,摸到同色的成為首輪對(duì)手,摸到白球的首輪輪空.現(xiàn)在小組其他3名選手首先依次各摸走一個(gè)小球,小亮看到第1個(gè)選手摸走的是紅球,他對(duì)小偉說(shuō)根據(jù)這3名選手的摸球結(jié)果我已經(jīng)知道咱倆恰好首輪對(duì)陣的概率了.請(qǐng)你求這個(gè)概率.(請(qǐng)用畫(huà)樹(shù)狀圖列表等方法寫(xiě)出分析過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案