【題目】過雙曲線x2﹣ =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
【答案】B
【解析】解:圓C1:(x+4)2+y2=4的圓心為(﹣4,0),半徑為r1=2; 圓C2:(x﹣4)2+y2=1的圓心為(4,0),半徑為r2=1,
設雙曲線x2﹣ =1的左右焦點為F1(﹣4,0),F2(4,0),
連接PF1 , PF2 , F1M,F2N,可得
|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)
=(|PF1|2﹣4)﹣(|PF2|2﹣1)
=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3
=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥22c﹣3=28﹣3=13.
當且僅當P為右頂點時,取得等號,
即最小值13.
故選B.
求得兩圓的圓心和半徑,設雙曲線x2﹣ =1的左右焦點為F1(﹣4,0),F2(4,0),連接PF1 , PF2 , F1M,F2N,運用勾股定理和雙曲線的定義,結合三點共線時,距離之和取得最小值,計算即可得到所求值.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數量關系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數量關系.(用含α的三角函數表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.
(1)求證:EF與⊙O相切;
(2)若AB=6,AD=,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,AB=DP=2 ,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)當三棱錐B﹣EFC的體積等于四棱錐P﹣ABCD體積的 時,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側面示意圖為圖2;使用時為了散熱,在底板下面墊入散熱架O′AC后,電腦轉到AO′B′的位置(如圖3),側面示意圖為圖4,已知OA=0B=20cm,B′O′⊥OA,垂足為C.
(1)求點O′的高度O′C;(精確到0.1cm)
(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)
(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應繞點O′按順時針方向旋轉多少度? 參考數據:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com