【題目】如圖,已知把長方形紙片ABCD沿EF折疊后,D與點B重合,C落在點C′的位置上,若∠1=60°AE=2

1)求∠2,∠3的度數(shù).

2)求長方形ABCD的紙片的面積S

【答案】(1)60°(2)

【解析】

1)根據(jù)ADBC,∠1與∠2是內(nèi)錯角,因而就可以求得∠2,根據(jù)圖形的折疊的定義,可以得到∠4=2,進而可以求得∠3的度數(shù);
2)已知AE=2,在RtABE中,根據(jù)直角三角形的性質(zhì)就可以求出AB、BE的長,BE=DE,則可以求出AD的長,就可以得到矩形的面積.

解:(1)∵ADBC,
∴∠2=1=60°,

又∵∠4=2=60°
∴∠3=180°-60°-60°=60°
2)在直角ABE中,由(1)知∠3=60°,
∴∠5=90°-60°=30°;
BE=2AE=4
AB=2

AD=AE+DE=AE+BE=2+4=6,
∴長方形紙片ABCD的面積S為:ABAD=2×6=12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了在即將到來的體育中考中取得好的成績,某校準備在體育中考前將學(xué)校九年級的名學(xué)生送到體育館進行一次模擬考試,經(jīng)學(xué)校和客車公司聯(lián)系了解到,輛大型客車和輛中型客車可載客人,輛大型客車和輛中型客車可載客人,若要將這些學(xué)生--次性全部送到體育館,且恰好裝滿.根據(jù)以上信息,回答下面問題:

1)每輛大型客車和中型客車各載多少人?

2)該校共有多少種租車方案?.

3)若每輛大型客車需租金元,每輛中型客車需租金元,請你給該校提供一個最省錢的租車建議,并求出最少租車費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,A FCE,且交BC于點F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由一些大小相同的小正方體組合成的簡單幾何體.根據(jù)要求完成下列題目.

1)正面圖中有______塊小正方體;

2)請在下面方格紙中分別畫出它的左視圖和俯視圖(畫出的圖都用鉛筆涂上陰影)

3)用小正方體搭一個幾何體,使得它的左視圖和俯視圖與你在(2)中所畫的圖一致,則這樣的幾何體最多要______塊小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點G,互余

1)求證:

2)若,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)即將來臨,花之語鮮花店準備購買A,B兩種鮮花禮盒,A型禮盒每盒成本為40元,售價為65元,B型禮盒每盒成本是60元,售價是100元,

1)該花店原計劃購進兩種禮盒共80盒,若全部銷售,要使總利潤不低于2750元,該花店原計劃最多購進多少盒A型禮盒?

2)為了獲得更多的利潤,花店負責人決定在實際的銷售中將B型禮盒的售價下調(diào)A型禮盒的價格不變,根據(jù)市場情況分析,相應(yīng)的兩種禮盒的銷售量與(1)中獲得最低利潤的銷售量相比,A型禮盒的銷售量增加了B型禮盒的銷售量增加了30盒,這樣恰好獲得3300元利潤,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周六上午,小亮去圖書館查資料,圖書館離家不遠,他步行去圖書館,查完資料后他又邊走邊轉(zhuǎn)去書店買書,在書店停留了幾分鐘后騎共享單車回家."已知小亮離家的距離()與離開家的時間()之間的關(guān)系如圖所示.請根據(jù)圖象回答下列問題:

1)小亮出發(fā)幾分鐘后到達圖書館?

2)小亮查完資料后步行的速度是多少?

3)小亮離開圖書館,幾點回到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,四邊形OABC為矩形,點A的坐標為(4,0),點B的坐標為(4,3),動點M,N分別從O、B同時出發(fā),以每秒1個單位長度的速度運動,其中,點M沿OA向終點A運動,點N沿BC向終點C運動,過點M作MP⊥OA,交AC于P,連接NP.下列說法①當點M運動了2秒時,點P的坐標為(2, );②當點M運動 秒時,△NPC是等腰三角形;③當點N運動了2秒時,△NPC的面積將達到最大值.其中正確的有

查看答案和解析>>

同步練習(xí)冊答案