【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.

(1)求證:AE=EF.

(2)如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn) ”其余條件不變,那么結(jié)論AE=EF是否成立呢?若成立,請你證明這一結(jié)論,若不成立,請你說明理由.

【答案】(1)證明見解析;(2)成立,證明見解析

【解析】試題分析:(1)AB的中點(diǎn)G,連接EG,根據(jù)已知條件利用ASA判定△AME≌△ECF,因?yàn)槿热切蔚膶?yīng)邊相等,所以AE=EF.
(2)AB上取一點(diǎn)M,使AM=EC,連接ME,根據(jù)已知條件利用ASA判定△AME≌△ECF,因?yàn)槿热切蔚膶?yīng)邊相等,所以AE=EF.

試題解析:

(1)證明:取AB的中點(diǎn)G,連接EG

∵四邊形ABCD是正方形∴AB=BC,∠B=∠BCD=∠DCG=90°

∵點(diǎn)E是邊BC的中點(diǎn)

AM=EC=BE

∴∠BGE=∠BEG=45°

∴∠AGE=135°,

CF平分∠DCG

∴∠DCF=∠FCG=45°,

∴∠ECF=180°-∠FCG=135°,

∴∠AGE=∠ECF

∵∠AEF=90°

∴∠AEB+∠CEF=90°,

又∵∠AEB+∠GAE=90°,

∴∠GAE=∠CEF,

在△AGE和△ECF中,∠GAE=∠CEF,AG=CE,∠AGE=∠ECF∴△AGE≌△ECFASA),∴AE=EF

(2)證明:在AB上取一點(diǎn)M,使AM=EC,連結(jié)ME,

BM=BE∴∠BME=45°∴∠AME=135°.

CF是外角平分線,

∴∠DCF = 45°.

∴∠ECF = 135°.

∴∠AME = ∠ECF .

∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°,

∴∠BAE = ∠CEF.

∴△AME ≌ △ECFASA).

AE=EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=﹣4是關(guān)于x的方程ax2﹣6x﹣8=0的一個解,則a=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師對甲、乙兩人的五次數(shù)學(xué)測驗(yàn)成績進(jìn)行統(tǒng)計,得出兩人五次測驗(yàn)成績的平均分均為90分,方差分別是S2=51、S2=12,由此可知( 。

A. 甲比乙的成績穩(wěn)定B. 乙比甲的成績穩(wěn)定

C. 甲、乙兩人的成績一樣穩(wěn)定D. 無法確定誰的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,如果轉(zhuǎn)盤停止后,指針上對準(zhǔn)500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉(zhuǎn)盤等分成20份)。

(1)小華購物450元,他獲得購物券的概率是多少?

(2)小麗購物600元,那么:

① 她獲得50元購物券的概率是多少?

② 她獲得100元以上(包括100元)購物券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知xa+b=6,xb=3,求xa的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為6cm,當(dāng)OP=6cm時,點(diǎn)P在_________;當(dāng)OP__________時,點(diǎn)P在圓內(nèi);當(dāng)OP___________時,點(diǎn)P不在圓外.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=2cm,BC=4cm,若以點(diǎn)C為圓心,2cm為半徑作圓,則點(diǎn)A在⊙C____________,點(diǎn)B在⊙C____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項(xiàng),第二道單選題有4個選項(xiàng),這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項(xiàng)).

(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是

(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案