【題目】已知二次函數(shù)y=2x2﹣4x﹣6.
(1)用配方法將y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;
(2)在所給的平面直角坐標(biāo)系中,畫出這個二次函數(shù)的圖象;
(3)當(dāng)﹣2<x<3時,觀察圖象直接寫出函數(shù)y的取值范圍;
(4)若直線y=k與拋物線沒有交點,直接寫出k的范圍.
【答案】(1)y=2x2﹣4x﹣6;(2)如圖,即為函數(shù)y=2x2﹣4x﹣6的圖象.見解析;(3)當(dāng)﹣2<x<3時,函數(shù)y的取值范圍為﹣8≤y<10;(4)直線y=k與拋物線沒有交點時,k<﹣8.
【解析】
(1)用配方法配方即可.
(2)按列表,描點,連線的步驟繪制即可.
(3)根據(jù)畫出的圖像直接寫出答案即可.
(4)將二次函數(shù)與直線方程聯(lián)立成一個一元二次方程,沒有交點,說明根的判別式小于0,即可求出k的范圍.
(1)y=2x2﹣4x﹣6=2(x﹣1)2﹣8;
(2)如圖:即為函數(shù)y=2x2﹣4x﹣6的圖象.
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣6 | ﹣8 | ﹣6 | 0 | … |
(3)觀察圖象知:
當(dāng)x=﹣2時,y=10,頂點坐標(biāo)為(1,﹣8)
即函數(shù)的最小值為﹣8,
所以﹣8≤y<10.
答:當(dāng)﹣2<x<3時,函數(shù)y的取值范圍為﹣8≤y<10.
(4)2x2﹣4x﹣6=k,整理得:
2x2﹣4x﹣6﹣k=0,
∵△=16+8(6+k)=64+8k.
即64+8k<0,即k<﹣8.
答:直線y=k與拋物線沒有交點時,k<﹣8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像與直線交于點、點.
(1)求的表達式和的值;
(2)當(dāng)時,求自變量的取值范圍;
(3)將直線沿軸上下平移,當(dāng)平移后的直線與拋物線只有一個公共點時,求平移后的直線表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角坐標(biāo)平面上的ΔABC,AC=CB,∠ACB=90°,且A(-1,0),B(m,n),C(3,0).若拋物線經(jīng)過A、C兩點.
(1)求a、b的值;
(2)將拋物線向上平移若干個單位得到的新拋物線恰好經(jīng)過點B,求新拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小陽在如圖所示的扇形舞臺上沿O-M-N勻速行走,他從點O出發(fā),沿箭頭所示的方向經(jīng)過點M再走到點N,共用時70秒.有一臺攝像機選擇了一個固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時間為t(單位:秒),他與攝像機的距離為y(單位:米),表示y與t的函數(shù)關(guān)系的圖象大致如圖②,則這個固定位置可能是圖①中的
A.點Q B.點P C.點M D.點N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長線上一點,E 為 BC 延長線上點.
(1)當(dāng) BD、BC 和 CE 滿足什么條件時,△ADB∽△EAC?
(2)當(dāng)△ADB∽△EAC 時,求∠DAE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過半徑OD的中點,點E為⊙O上一動點,CF⊥AE于點F.當(dāng)點E從點B出發(fā)順時針運動到點D時,點F所經(jīng)過的路徑長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將面積為的矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=BC, DH=AD,連接EF, FG,GH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com