【題目】如圖,在正方形ABCD中,EAD邊的中點(diǎn).

(1)用直尺和圓規(guī)作⊙O,使⊙O 經(jīng)過BC、E三點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若正方形的邊長(zhǎng)為4,求(1)中所作⊙O的面積.

【答案】(1)圖形見解析(2)

【解析】試題分析:(1)連接BE,分別作出BE,BC的垂直平分線,進(jìn)而得到交點(diǎn)O,O即為圓心,求出答案;

(2)根據(jù)題意首先得出四邊形ABFE是矩形,進(jìn)而利用勾股定理求得圓的半徑,從而求得圓的面積.

試題解析:(1)如圖所示;

(2)如圖,在(1)中設(shè)BC的垂直平分線交BC于點(diǎn)F,

則BF=BC=2,∠BFE=90°,

∵四邊形ABCD是正方形,

∴∠EAB=∠ABF=90°,

∴四邊形ABFE是矩形,

∴EF=AB=4,

設(shè)⊙O的半徑為r,連接OB

∵OB=OE=r,FO=4-r,BF=2

∴r2=22+(4-r)2,

O的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=mx+ny=mnxmn≠0),在同一平面直角坐標(biāo)系的圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB的三個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為一個(gè)長(zhǎng)度單位,以點(diǎn)O建立平面直角坐標(biāo)系AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90,得到A1OB1(AA1是對(duì)應(yīng)點(diǎn))

(1)寫出點(diǎn)A1,B1的坐標(biāo) ;

(2)求旋轉(zhuǎn)過程中邊OB掃過的面積(結(jié)果保留π);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果多項(xiàng)式 2x4 -3x3 +ax2 7 x b能被x2 x 2整除,那么的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題,求的立方根.華羅庚脫口而出,你知道怎樣迅速準(zhǔn)確地計(jì)算出結(jié)果的嗎?請(qǐng)按照下面的問題試一試:

1)由,確定的立方根是 位數(shù);

2)由的個(gè)位數(shù)是確定的立方根的個(gè)位數(shù)是 ;

3)如果劃去后面的三位得到數(shù),,由此能確定的立方根的十位數(shù)是 ;所以的立方根是

4)用類似的方法,請(qǐng)說出的立方根是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年金卉莊園“新春祈福燈會(huì)”前夕,我市某工藝廠設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(jià) (元/件)

...

30

40

50

60

...

每天銷售量 (件)

...

200

180

160

140

...

(1)已知上表數(shù)據(jù)滿足以下三個(gè)函數(shù)模型中的一個(gè):①;為常數(shù), 中,請(qǐng)你求出的函數(shù)關(guān)系式(不必寫自變量的范圍);

(2)求工藝廠試銷該工藝品每天獲得的利潤(rùn)的函數(shù)關(guān)系式,并求當(dāng)銷售單價(jià)為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

(3)孝感市物價(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過72元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)定義“*”是一種運(yùn)算符號(hào),規(guī)定,則=________

2)賓館重新裝修后,準(zhǔn)備在大廳的主樓梯上鋪設(shè)一種紅地毯,已知這種地毯每平方米售價(jià)40元,主樓梯道寬2米,其側(cè)面如圖所示,則買地毯至少需要___________________ 元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對(duì)稱軸是直線x=1.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1y2,請(qǐng)直接寫出n的取值范圍;

(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣1p2時(shí),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸,y軸的交點(diǎn)為A,B兩點(diǎn),點(diǎn)AB的縱坐標(biāo)、橫坐標(biāo)如圖所示.

(1)求直線AB的表達(dá)式及△AOB的面積SAOB

(2)在x軸上是否存在一點(diǎn),使SPAB=3?若存在,求出P點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案