【題目】三葉電風(fēng)扇葉片的外形是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,其最小旋轉(zhuǎn)角的度數(shù)是(  )

A. 60°B. 120°C. 180°D. 240°

【答案】B

【解析】

根據(jù)旋轉(zhuǎn)角及旋轉(zhuǎn)對(duì)稱圖形的定義結(jié)合圖形特點(diǎn)作答.

解:∵360°÷3=120°
∴該圖形繞中心至少旋轉(zhuǎn)120度后能和原來的圖案互相重合.
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程x+3y=7的正整數(shù)解的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正三角系,正方形,正五邊形,正六邊形這幾個(gè)圖形中,單獨(dú)選用一種圖形不能進(jìn)行平面鑲嵌的圖形是( )

A.正三角形 B.正方形 C.正五邊形 D.正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只用下列一種正多邊形不能鑲嵌成平面圖案的是( 。

A. 正三角形B. 正方形C. 正五邊形D. 正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題“同位角相等”是命題(填“真”或“假”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)正多邊形的內(nèi)角和是1800°,則這個(gè)正多邊形的外角是度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市對(duì)位于筆直公路AC上兩個(gè)小區(qū)A,B的供水路線進(jìn)行優(yōu)化改造,供水站M在筆直公路AD,測(cè)得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)A,B之間的距離為300(+1),求供水站M分別到小區(qū)A,B的距離.(結(jié)果可保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,PHHC.A,B兩點(diǎn)間的距離是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:,并把它的解集在數(shù)軸上表示出來.

【答案】﹣1<x≤2,數(shù)軸表示見解析.

【解析】試題分析:分別求出不等式組中兩個(gè)不等式的解集,再求出其公共解集,然后在數(shù)軸上表示出其解集.

得,x≤2,

得,x>﹣1,

故此不等式組的解集為:﹣1<x≤2.

在數(shù)軸上表示為:

點(diǎn)睛: 本題考查了一元一次不等式組的解法及解集的數(shù)軸表示,先分別解兩個(gè)不等式,求出它們的解集,再求兩個(gè)不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.在數(shù)軸上空心圈表示不包含該點(diǎn),實(shí)心點(diǎn)表示包含該點(diǎn).

型】解答
結(jié)束】
22

【題目】解不等式組:

查看答案和解析>>

同步練習(xí)冊(cè)答案