【題目】如圖,△ABC中,AB=AC,∠A=60°,BC=6,直線MN∥BC,且分別交邊AB,AC于點M,N,已知直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點A旋轉(zhuǎn),使點M落在邊BC上的點D處,那么BD=_____.
【答案】3±
【解析】過點A作AE⊥BC于點E,由AB=AC、∠A=60°,可得出△ABC為等邊三角形,進而可得出BE、AE的長度,由MN∥BC可得出△AMN∽△ABC,根據(jù)相似三角形的性質(zhì)結(jié)合直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,可求出AM的長度,由旋轉(zhuǎn)的性質(zhì)可得出AD的長度.在Rt△ADE中,利用勾股定理可求出DE的長度,再根據(jù)BD=BE±DE,即可求出BD的長度.
過點A作AE⊥BC于點E,如圖所示.
∵AB=AC,∠A=60°,∴△ABC為等邊三角形,∴BE=CE=BC=3,AE=BC=3.
∵MN∥BC,∴△AMN∽△ABC,∴=()2.
∵直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,∴=()2=,即()2=,解得:AM=,∴AD=AM=.
在Rt△ADE中,∠AED=90°,AD=,AE=3,∴DE=,∴BD=BE±DE=3±.
故答案為:3±.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,采用分階段計費的方法按月計算每戶家庭的水費:月用水量不超過20m3時,按2元/m3計算;月用水量超過20m3時,其中的20m3仍按2元/m3計算,超過部分按2.6元/m3計算.設(shè)某戶家庭月用水量xm3.
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | 21 |
(1)用含x的式子表示:
當0≤x≤20時,水費為 元;
當x>20時,水費為 元.
(2)小花家第二季度用水情況如上表,小花家這個季度共繳納水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F.
(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當AD=25,且AE<DE時,求cos∠PCB的值;
③當BP=9時,求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=60°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當點D在線段BC上時,①AB與CF的位置關(guān)系為: ;
②BC,CD,CF之間的數(shù)量關(guān)系為: .
(2)數(shù)學(xué)思考:如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸:如圖3,當點D在線段BC的延長線上時,設(shè)AD與CF相交于點G,若已知AB=4,CD=AB,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電影《我和我的祖國》講述了新中國成立70年間普通百姓與共和國息息相關(guān)的故事.影片上映15天就斬獲票房26億元人民幣,口碑票房實現(xiàn)雙豐收.據(jù)統(tǒng)計,10月8日,該電影在重慶的票房收入為140萬元,接下來7天的票房變化情況如下表(正數(shù)表示比前一天增加的票房,負數(shù)表示比前一天減少的票房):
日期 | 9日 | 10日 | 11日 | 12日 | 13日 | 14日 | 15日 |
票房變化(萬元) | 0 |
(1)這7天中,票房收入最多的是10月________日,票房收入最少的是10月________日;
(2)根據(jù)上述數(shù)據(jù)可知,這7天該電影在重慶的平均票房收入為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究
(1)已知如圖1,若AB∥CD,P為平行線內(nèi)的一點請你判斷∠B+∠P+∠D= 度,并說明理由.
(2)如圖2,若AB∥CD ,P1、P2為平行線內(nèi)的兩個點,請求出∠B+∠P1+∠P2+∠D= 度(不需要說明理由)
(3)如圖3,如此類推若AB∥CD,P1、、P2、P3、P4、……Pn為平行線內(nèi)的n個點,請求出∠B+∠P1+∠P2+∠P3+…….+∠Pn-1+∠Pn+∠D= 度(不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,已知線段 AB=12 cm,點 C 為線段 AB 上的一動點(點 C 不與 A,B 重合),點D,E 分別是 AC 和 BC 的中點.
(1)若點 C 恰好是 AB 的中點,則 DE= cm;
(2)若 AC=4 cm,求 DE的長;
(3)試說明當點C在線段 AB 上運動時,DE 的長不變;
(4)如圖 2,已知∠AOB=120°,在∠AOB 的內(nèi)部任畫一條射線 OC.
①請分別畫出∠AOC 和∠COB 的平分線 OD,OE(不要求尺規(guī)作圖);
②說明∠DOE 的度數(shù)與射線 OC 的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:若一個三角形中存在兩邊的平方差等于第三邊上高的平方,則稱這個三角形為勾股高三角形,兩邊交點為勾股頂點.
●特例感知
①等腰直角三角形 勾股高三角形(請?zhí)顚?/span>“是”或者“不是”);
②如圖1,已知△ABC為勾股高三角形,其中C為勾股頂點,CD是AB邊上的高.若,試求線段CD的長度.
●深入探究
如圖2,已知△ABC為勾股高三角形,其中C為勾股頂點且CA>CB,CD是AB邊上的高.試探究線段AD與CB的數(shù)量關(guān)系,并給予證明;
●推廣應(yīng)用
如圖3,等腰△ABC為勾股高三角形,其中,CD為AB邊上的高,過點D向BC邊引平行線與AC邊交于點E.若,試求線段DE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com