【題目】一位農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售.為了方便,他帶了一些零錢備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖,結(jié)合圖象回答下列問(wèn)題:
(1)農(nóng)民自帶的零錢是多少?
(2)求出降價(jià)前每千克的土豆價(jià)格是多少?
(3)降價(jià)后他按每千克0.4元將剩余土豆售完,這時(shí)他手中的錢(含備用零錢)是26元,試問(wèn)他一共帶了多少千克土豆?
【答案】(1) 5元; (2) 0.5元; (3) 45千克;
【解析】
(1) 由圖象可知,當(dāng)x=0時(shí),y=5,所以農(nóng)民自帶的零錢是5元.
(2) 可設(shè)降價(jià)前每千克土豆價(jià)格為k元,則可列出農(nóng)民手中錢y與所售土豆千克數(shù)x之間的函數(shù)關(guān)系式,由圖象知,當(dāng)x=30時(shí),y的值,從而求出這個(gè)函數(shù)式.
(3) 可設(shè)降價(jià)后農(nóng)民手中錢y與所售土豆千克數(shù)x之間的函數(shù)關(guān)系式,因?yàn)楫?dāng)x=a時(shí),y=26,當(dāng)x=30時(shí),y=20,依此列出方程求解即可得到答案.
解:(1) 由圖象可知,當(dāng)x=0時(shí),y=5,
故農(nóng)民自帶的零錢是5元.
答:農(nóng)民自帶的零錢是5元.
(2) 設(shè)降價(jià)前每千克土豆價(jià)格為k元,
則農(nóng)民手中錢y與所售土豆千克數(shù)x之間的函數(shù)關(guān)系式為:y=kx+5,
∵從圖像可以看出,當(dāng)x=30時(shí),y=20,
∴20=30k+5,
解得:k=0.5,
故降價(jià)前每千克土豆是0.5元.
答:降價(jià)前每千克土豆價(jià)格為0.5元.
(3) 設(shè)降價(jià)后農(nóng)民手中錢y,所售土豆千克數(shù)為x,
降價(jià)后他按每千克0.4元將剩余土豆售完,
則得到y與x之間的函數(shù)關(guān)系式為y=0.4x+b,
∵當(dāng)x=30時(shí),y=20,
∴b=8,
當(dāng)x=a時(shí),y=26,即0.4a+8=26,
解得:a=45.
答:農(nóng)民一共帶了45千克土豆.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是( 。
A. b≥ B. b≥1或b≤﹣1 C. b≥2 D. 1≤b≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足為Q,延長(zhǎng)MN至點(diǎn)G,取NG=NQ,若△MNP的周長(zhǎng)為12,MQ=a,則△MGQ周長(zhǎng)是 ( 。
A.8+2aB.8aC.6+aD.6+2a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“今有邑,東西七里,南北九里,各開(kāi)中門,出東門一十五里有木,問(wèn):出南門幾何步而見(jiàn)木?”這段話摘自《九章算術(shù)》,意思是說(shuō):如圖,矩形城池ABCD,城墻CD長(zhǎng)9里,城墻BC長(zhǎng)7里,東門所在的點(diǎn)E,南門所在的點(diǎn)F分別是CD,BC的中點(diǎn),EG⊥CD,EG=15里,FH⊥BC,點(diǎn)C在HG上,問(wèn)FH等于多少里?答案是FH=________里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:
新定義:
將一個(gè)平面圖形分為面積相等的兩部分的直線叫做該平面圖形的“等積線”,其“等積線”被該平面圖形截得的線段叫做該平面圖形的“等積線段”(例如圓的直徑就是圓的“等積線段”)
解決問(wèn)題:
已知在Rt△ABC中,∠BAC=90°,AB=AC=2.
(1)如圖1,若AD⊥BC,垂足為D,則AD是△ABC的一條等積線段,直接寫出AD的長(zhǎng);
(2)在圖2和圖3中,分別畫出一條等積線段,并直接寫出它們的長(zhǎng)度. (要求:圖1、圖2和圖3中的等積線段的長(zhǎng)度各不相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD與AE相交于F,DG交BC的,延長(zhǎng)線于G,∠CFE=∠AEB
(1)若∠B=87°,求∠DCG的度數(shù);
(2)AD與BC是什么位置關(guān)系?并說(shuō)明理由;
(3)若∠DAB=α,∠DGC=β,直接寫出α、β滿足什么數(shù)量關(guān)系時(shí),AE∥DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量分別為45人/輛和30人/輛和租金分比為400元/輛和280元/輛:杏壇中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送八年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),若要保證租車費(fèi)用不超過(guò)1900元,求A型客車的數(shù)量最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一老人坐在MN這層臺(tái)階上曬太陽(yáng).(取1.73)
(1)求樓房的高度約為多少米?
(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)老人能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com