【題目】已知、、三點在同一條直線上,平分,平分.
(1)若,求;
(2)若,求;
(3)是否隨的度數(shù)的變化而變化?如果不變,度數(shù)是多少?請你說明理由,如果變化,請說明如何變化.
【答案】(1)90°;(2)90°;(3)∠DOE不隨∠AOC的度數(shù)的變化而變化,∠DOE=90°,理由見解析.
【解析】
(1)由角平分線的定義求出∠COD的度數(shù),在由平角和角平分線的定義求出∠COE,即可求出∠DOE;
(2)同(1)的方法可求出∠DOE;
(3)設∠AOC=,然后依照(1)的方法進行推導得出結論.
解:(1)∵OD平分∠AOC,∠AOC=40°,
∴∠COD=∠AOC=20°,∠BOC=
又∵OE平分∠BOC,
∴∠COE=∠BOC=70°
∴∠DOE=∠COD+∠COE=
(2)∵OD平分∠AOC,∠AOC=60°,
∴∠COD=∠AOC=30°,∠BOC=
又∵OE平分∠BOC,
∴∠COE=∠BOC=60°
∴∠DOE=∠COD+∠COE=
(3)∠DOE不隨∠AOC的度數(shù)的變化而變化,∠DOE=90°,理由如下:
設∠AOC=,
∵OD平分∠AOC,
∴∠COD=∠AOC=,∠BOC=
又∵OE平分∠BOC,
∴∠COE=∠BOC=
∴∠DOE=∠COD+∠COE=
故∠DOE不隨∠AOC的度數(shù)的變化而變化,始終等于90°.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的有( )
①有理數(shù)包括正有理數(shù)和負有理數(shù); ②絕對值等于它本身的數(shù)是非負數(shù);③若|b|=|﹣5|,則b=-5 ; ④當b=2時,5﹣|2b﹣4|有最小值是5;⑤若、互為相反數(shù),則;⑥是關于、的六次三項式.
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3)。雙曲線的圖像經過BC的中點D,且與AB交于點E,連接DE。
(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連接對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N,給出下列結論:①∠AME=108°;②;③MN=;④.其中正確結論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.
(1)求證:PC是⊙O的切線;
(2)若PD=cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是弧AB的中點,連接CE,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩地相距180km,一列慢車以40km/h的速度從甲地勻速駛往乙地,慢車出發(fā)30分鐘后,一列快車以60km/h的速度從甲地勻速駛往乙地.兩車相繼到達終點乙地,再次過程中,兩車恰好相距10km的次數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圓中,、是圓的半徑,點在劣弧弧上,,,∥,聯(lián)結.
(1)如圖1,求證:平分;
(2)點在弦的延長線上,聯(lián)結,如果△是直角三角形,請你在如圖2中畫出
點的位置并求的長;
(3)如圖3,點在弦上,與點不重合,聯(lián)結與弦交于點,設點與點的
距離為,△的面積為,求與的函數(shù)關系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦了一次趣味數(shù)學黨賽,滿分100分,學生得分均為整數(shù),這次競賽中,甲、乙兩組學生成績如下(單位:分)
甲組:30,60,60,60,60,60,70,90,90,100
乙組:50,60,60,60,70,70,70,70,80,90.
組別 | 平均分 | 中位數(shù) | 方差 |
甲組 | 68 | a | 376 |
乙組 | b | 70 |
(1)以生成績統(tǒng)計分析表中a=_________分,b=_________分.
(2)小亮同學說:“這次賽我得了70分,在我們小組中屬中游略偏上!”雙察上面表格判斷,小亮可能是甲、乙哪個組的學生?并說明理由。
(3)計算乙組成的方差,如果你是該校數(shù)學競賽的教練員,現(xiàn)在需要你選一組同學代表學校參加復賽,你會進擇哪一組?并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB=4,延長AB到點C,使得AB=2BC,反向延長AB到點D,使AC=2AD.
(1)求線段CD的長;
(2)若Q為AB的中點,P為線段CD上一點,且BP=BC,求線段PQ的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com