【題目】如圖表示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果輸水管的半徑為5cm,水面寬AB為8cm,則水的最大深度CD為( )
A.4cm
B.3cm
C.2cm
D.1cm
【答案】C
【解析】解:如圖所示:∵輸水管的半徑為5cm,水面寬AB為8cm,水的最大深度為CD, ∴DO⊥AB,
∴AO=5cm,AC=4cm,
∴CO= =3(cm),
∴水的最大深度CD為:2cm.
故選:C.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和垂徑定理的推論的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條。煌普2 :圓的兩條平行弦所夾的弧相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,若點A(x,),點B(2x1,),點C(z+1,),已知點A,B關(guān)于原點對稱,點C在二,四象限平分線上.
(1)求A、B、C點的坐標;
(2)結(jié)合A、B、C的坐標,在圖中建立平面直角坐標系;
(3)在(2)的條件下,若P為y軸上的一個動點,請直接寫出使△PBC周長最小的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1拋物線y=ax2+bx+c過 A(﹣1,0)、B(4,0)、C(0,2)三點.
(1)求拋物線解析式;
(2)點C,D關(guān)于拋物線對稱軸對稱,求△BCD的面積;
(3)如圖2,過點E(1,﹣1)作EF⊥x軸于點F,將△AEF繞平面內(nèi)某點旋轉(zhuǎn)180°得△MNQ(點M、N、Q分別與A、E、F對應(yīng))使得M、N在拋物線上,求M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當點A落在A′C上時,此題可解(如圖2).
請你回答:AP的最大值是 .
參考小偉同學(xué)思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點,則AP+BP+CP的最小值是 .(結(jié)果可以不化簡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線AM交直線BC于點E,射線AN交直線CD于點F,連結(jié)EF,請解答下列問題:
(1)如圖1,求證:EC+FC=AC;
(2)將∠MAN繞點A旋轉(zhuǎn),如圖2,如圖3,請直接寫出線段EC,F(xiàn)C,AC之間的數(shù)量關(guān)系,不需要證明;
(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A,B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
數(shù)學(xué)活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”
小艾的作法如下:
(1)在直線l上任取點A,以A為圓心,AP長為半徑畫。
(2)在直線l上任取點B,以B為圓心,BP長為半徑畫。
(3)兩弧分別交于點P和點M
(4)連接PM,與直線l交于點Q,直線PQ即為所求.
老師表揚了小艾的作法是對的.
請回答:小艾這樣作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,得到等腰直角三角形A2017OB2017.則點B2017的坐標是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com