等腰梯形ABCD中,AD∥BC,BC=4
2
,AD=
2
,∠B=45°,直角三角板含45°角精英家教網(wǎng)的頂點(diǎn)E在邊BC上移動(dòng)(不與點(diǎn)C重合),一直角邊始終經(jīng)過(guò)點(diǎn)A(如圖),斜邊與CD交于點(diǎn)F,設(shè)BE=x,CF=y
(1)求證:△ABE∽△ECF;
(2)求y關(guān)于x的函數(shù)解析式,并求出當(dāng)點(diǎn)E移動(dòng)到什么位置時(shí)y的值最大,最大值是多少?
(3)連接AF,當(dāng)△AEF為直角三角形時(shí),求x的值;
(4)求點(diǎn)E移動(dòng)過(guò)程中,△ADF外接圓半徑的最小值.
分析:(1)由題意易證∠1=∠3,從而得出△ABE∽△ECF;
(2)由相似得出比例式,即可得出y是x的二次函數(shù),求出y的最大值即可;
(3)分兩種情況①∠EAF=90°時(shí),②∠EFA=90°時(shí),得出x的值;
(4)設(shè)△ADF外接圓半徑為r,作FH⊥AD于H,由勾股定理可求出r的最小值.
解答:精英家教網(wǎng)解:(1)∵∠AEF=∠B=∠C=45°,
∴∠1+∠2=∠2+∠3=135°,
∴∠1=∠3,
∴△ABE∽△ECF;

(2)AB=(4
2
-
2
)÷2×
2
=3,
由(1)得,
BE
CF
=
AB
CE
,即
x
y
=
3
4
2
-x

∴y=
1
3
x(4
2
-x)=-
1
3
x2+
4
2
3
x(0<x<4
2
),精英家教網(wǎng)
當(dāng)x=2
2
即E為BC的中點(diǎn)時(shí),ymax=
8
3


(3)(i)如圖i.當(dāng)∠EAF=90°時(shí),EF=
2
AE,
∴EC=
2
AB,即4
2
-x=
2
×3,
∴x=
2

(ii)如圖ii:∠EFA=90°時(shí),∴AE=
2
EF,精英家教網(wǎng)
∴AB=
2
EC,即3=
2
(4
2
-x),
∴x=
5
2
2


(4)設(shè)△ADF外接圓的圓心為O,其半徑為r.
∵∠ADF=135°,
∴劣弧AF所對(duì)圓周角為45°
∴劣弧AF所對(duì)圓心角∠AOF=90°,
∴AF=
2
r,
當(dāng)AF最小時(shí),r也最。精英家教網(wǎng)
又∵當(dāng)CF最大時(shí),AF最小,
此時(shí)DF=DC-CF=3-
8
3
=
1
3

作FH⊥AD于H,則FH=DH=
2
6

∴AFmin=
AH2+FH2
=
10
6
=
5
3
,
∴rmin=
5
2
6
點(diǎn)評(píng):本題考查了相似三角形的判定和性質(zhì)、二次函數(shù)的最值問(wèn)題以及等腰梯形的性質(zhì),是一道綜合題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,則梯形ABCD的面積是
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分別為對(duì)角線AC、DB的中點(diǎn),且EF=4.求這個(gè)梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的長(zhǎng).
(2)如圖是一個(gè)外輪廓為矩形的機(jī)器零件平面示意圖,根據(jù)圖中的尺寸(單位:mm),計(jì)算兩圓孔中心A和B的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等腰梯形ABCD中,AD=2,BC=4,高DF=2,則腰CD長(zhǎng)是
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案