【題目】拋物線y=ax2+bx+c的頂點(diǎn)D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確的結(jié)論是( 。
A.③④B.②④C.②③D.①④
【答案】A
【解析】
利用拋物線與x軸有2個(gè)交點(diǎn)和判別式的意義可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的另一個(gè)交點(diǎn)A在點(diǎn)(0,0)和(1,0)之間,則x=1時(shí),a﹣b+c<0,則可對(duì)②進(jìn)行判斷;由拋物線的對(duì)稱軸方程得到b=2a,而x=﹣1時(shí),a﹣b+c=2,則a﹣2a+c=2,、于是可對(duì)③進(jìn)行判斷;利用拋物線y=ax2+bx+c的頂點(diǎn)D(﹣1,2),可得到拋物線與直線y=2只有一個(gè)公共點(diǎn),于是可對(duì)④進(jìn)行判斷.
解:∵拋物線與x軸有2個(gè)交點(diǎn),
∴△=b2﹣4ac>0,所以①錯(cuò)誤;
∵拋物線y=ax2+bx+c的頂點(diǎn)D(﹣1,2),
∴拋物線的對(duì)稱軸為直線x=﹣1,
而拋物線與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,
∴拋物線與x軸的另一個(gè)交點(diǎn)A在點(diǎn)(0,0)和(1,0)之間,
∴x=1時(shí),y<0,
∴a﹣b+c<0,所以②錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=﹣=﹣1,
∴b=2a,
∵x=﹣1時(shí),y=2,
即a﹣b+c=2,
∴a﹣2a+c=2,即c﹣a=2,所以③正確;
∵拋物線y=ax2+bx+c的頂點(diǎn)D(﹣1,2),
即x=﹣1時(shí),y有最大值2,
∴拋物線與直線y=2只有一個(gè)公共點(diǎn),
∴方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根,所以④正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的半徑為1,按如下步驟作圖:
①以上的點(diǎn)A為圓心,1為半徑畫弧交于點(diǎn)B;
②依次在上取點(diǎn)C和D,使得;
③分別以點(diǎn)A和D為圓心,AC長(zhǎng)為半徑畫弧交于點(diǎn)E;
④以點(diǎn)A為圓心,OE長(zhǎng)為半徑畫弧交于點(diǎn)F.
則以下說(shuō)法不正確的是( )
A.AC=B.AFC.∠ACF=45°D.∠BEO=30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)若該方程的一個(gè)根為1,求a的值及方程的另一個(gè)根;
(2)二次函數(shù)y=x2+ax+a﹣2的圖象與x軸有交點(diǎn)嗎?有幾個(gè)交點(diǎn)?為什么?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點(diǎn),與軸相交于點(diǎn)C,對(duì)稱軸為直線且OA=OC,則下列結(jié)論:①②③④關(guān)于的方程有一個(gè)根為其中正確的結(jié)論個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B的坐標(biāo)為(0,4),將線段AB的中點(diǎn)繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得點(diǎn)C,過(guò)點(diǎn)C作x軸的垂線,垂足為F,過(guò)點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連接AC、BC、CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)線段AB與AC的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)當(dāng)t=2時(shí),求CF的長(zhǎng);
(3)當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上?求出此時(shí)點(diǎn)C的坐標(biāo);
(4)設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線;
(2)若CD=2,BP=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展了主題為“垃圾分類,綠色生活新時(shí)尚”的宣傳活動(dòng),為了解學(xué)生對(duì)垃圾分類知識(shí)的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、待合格四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制了如下不完整的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.
等級(jí) | 頻數(shù) | 頻率 |
優(yōu)秀 | 21 | 42% |
良好 | m | 40% |
合格 | 6 | n% |
待合格 | 3 | 6% |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)本次調(diào)查隨機(jī)抽取了 名學(xué)生;表中m= ,n= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校有2000名學(xué)生,請(qǐng)你估計(jì)該校掌握垃圾分類知識(shí)達(dá)到“優(yōu)秀”和“良好”等級(jí)的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖⊙O的半徑為1,過(guò)點(diǎn)A(2,0)的直線切⊙O于點(diǎn)B,交y軸于點(diǎn)C.
(1)求線段AB的長(zhǎng);
(2)求以直線AC為圖象的一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com