【題目】學(xué)校為了調(diào)查學(xué)生對教學(xué)的滿意度,隨機(jī)抽取了部分學(xué)生作問卷調(diào)查:用“”表示“很滿意”,“”表示“滿意”,“”表示“比較滿意”,“”表示“不滿意”,下圖是工作人員根據(jù)問卷調(diào)查統(tǒng)計資料繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次問卷調(diào)查,共調(diào)查了多少名學(xué)生?
(2)將圖甲中“”部分的圖形補充完整;
(3)求出圖乙中扇形的圓心角的度數(shù).
【答案】(1)200;(2)詳見解析;(3)18°
【解析】
(1)“比較滿意”的人數(shù)是40人,占總?cè)藬?shù)的20%,即可求出共調(diào)查了多少名學(xué)生;
(2)由題(1)知:總?cè)藬?shù)為200人,B的人數(shù)占總?cè)藬?shù)的50%,可算出B的具體人數(shù),補充完成條形統(tǒng)計圖即可;
(3)先算出D的人數(shù)占總?cè)藬?shù)的百分?jǐn)?shù),再用這個百分?jǐn)?shù)乘以360°即可.
解:(1),即本次問卷調(diào)查,共調(diào)查了200人,
(2)B的人數(shù):200×50%=100(人)
補全條形統(tǒng)計圖,如圖所示:
(3)所占的百分比為,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰和等腰中,,,連接交于點.
(1)如圖1,若:
①與的數(shù)量關(guān)系為 ;
②的度數(shù)為 ;
圖1
(2)如圖2,若:
圖2
①判斷與之間存在怎樣的數(shù)量關(guān)系?并說明理由;
②求的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC邊的中點,DF⊥AE,垂足為F.
(1)求證:△ADF∽△EAB;
(2)若AB=4,AD=6,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有五張正面分別寫有數(shù)字﹣3,﹣2,1, 2,3的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻后隨機(jī)抽取一張,以其正面的數(shù)字作為a的值,然后再從剩余的四張卡片中隨機(jī)抽取一張,以其正面的數(shù)字作為b的值,用列表法或樹狀圖法求點(a,b)在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+1與反比例函數(shù)y=(m≠0)相交于A、B兩點,與x軸,y軸分別交于D、C兩點,已知sin∠CDO=,△BOD的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)連接OA,OB,點M是線段AB的中點,直線OM向上平移h(h>0)個單位將△AOB的面積分成1:7兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時,函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.
問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時, 的最小值為__________.
問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.
(1)求證:;
(2)當(dāng)AC=2,CD=1時,求⊙O的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com