【題目】如圖1,拋物線y= 2+b+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若M是拋物線的對(duì)稱(chēng)軸與直線BC的交點(diǎn),N是拋物線的頂點(diǎn),求MN的長(zhǎng);
(3)設(shè)點(diǎn)P是(1)中的拋物線的一個(gè)動(dòng)點(diǎn),是否存在滿足S△PAB=8的點(diǎn)P?如存在請(qǐng)求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
圖1 備用圖
【答案】(1)y=x2﹣2x﹣3;(2)1;(3)當(dāng)P點(diǎn)的坐標(biāo)分別為(1+2,4)、(1﹣2,4)、(1,﹣4)時(shí),S△PAB=8.
【解析】試題分析:(1)把點(diǎn)A、B的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)b、c的方程組,通過(guò)解方程組求得它們的值即可;
(2)結(jié)合拋物線的解析式得到點(diǎn)C、N的坐標(biāo),利用B、C的坐標(biāo)可以求得直線BC的解析式,由一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和點(diǎn)的坐標(biāo)與圖形的性質(zhì)進(jìn)行解答即可;
(3)根據(jù)P點(diǎn)在拋物線上設(shè)出P點(diǎn),然后再由S△PAB=8,從而求出P點(diǎn)坐標(biāo).
試題分析:(1)∵拋物線y=x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(﹣1,0),B(3,0),
∴,解之得,
∴所求拋物線的解析式為:y=x2﹣2x﹣3;
(2)由(1)知,該拋物線的解析式為:y=x2﹣2x﹣3,則C(0,﹣3).
又∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴N(1,﹣4).
設(shè)直線BC的解析式為y=kx﹣3(k≠0).
把B(3,0)代入,得0=3k﹣3,解得k=1,
則該直線解析式為:y=x﹣3.
故當(dāng)x=1時(shí),y=﹣2,即M(1,﹣2),
∴MN=|﹣3|﹣|﹣2|=1.即MN=1;
(3)設(shè)點(diǎn)P的坐標(biāo)為(x,y),由題意,得S△PAB=×4×|y|=8,
∴|y|=4, y=±4.
當(dāng)y=4時(shí),x2﹣2x﹣3=4,
∴x1=1+2,x2=1﹣2,
當(dāng)y=﹣4時(shí),x2﹣2x﹣3=﹣4,
∴x=1,
∴當(dāng)P點(diǎn)的坐標(biāo)分別為(1+2,4)、(1﹣2,4)、(1,﹣4)時(shí),S△PAB=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y軸以每秒1個(gè)單位長(zhǎng)的速度向上移動(dòng),且過(guò)點(diǎn)P的直線l(其解析式為,且直線l與x軸所夾的銳角為45°)也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)時(shí),求l的解析式;
(2)若點(diǎn)M,N位于l的異側(cè),確定t的取值范圍;
(3)求出t為何值時(shí),點(diǎn)M關(guān)于l的對(duì)稱(chēng)點(diǎn)落在坐標(biāo)軸上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)是上一點(diǎn),且,連接并延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作的垂線,垂足為,交于點(diǎn).
(1)求證:;
(2)若,解答下列問(wèn)題:
①求證:;
②當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)40°得到△A1BC1,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
求證:ΔBCF≌ΔBA1D.
當(dāng)∠C=40°時(shí),請(qǐng)你證明四邊形A1BCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,禁止捕魚(yú)期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚(yú)船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚(yú)船,求巡邏船從出發(fā)到成功攔截捕魚(yú)船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
(1)如圖1,學(xué)校A,B在道路MN的異側(cè).在MN上建公交站P,使得P到A,B的距離相等。利用尺規(guī)作圖確定P的位置.
(2)如圖2,學(xué)校C,D在道路MN的同側(cè),在MN上建公交站Q,使得Q到C,D的距離的和最短.利用網(wǎng)格確定Q的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com