已知⊙O1的半徑是3cm,⊙O2的半徑是2cm,O1O2=cm,則兩圓的位置關(guān)系是( 。
A.相離
B.外切
C.相交
D.內(nèi)切
C
此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.由⊙O1與⊙O2的半徑分別為3cm、2cm,且圓心距O1O2=cm,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可得出兩圓位置關(guān)系.
解:∵⊙O1與⊙O2的半徑分別為3cm、2cm,且圓心距O1O2=cm,
又∵3+2=5>,3﹣2=1,
∴兩圓的位置關(guān)系是相交.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以點(diǎn)P(2,0)為圓心,為半徑作圓,點(diǎn)M(a,b) 是⊙P上的一點(diǎn),則的最大值是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC、CE.

(1)求證:∠B=∠D;
(2)若AB=,BC-AC=2,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中,,,如果將在坐標(biāo)平面內(nèi),繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)到的位置.

(1)求點(diǎn)的坐標(biāo).
(2)求頂點(diǎn)從開始到點(diǎn)結(jié)束經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn)M,N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長(zhǎng)等于AC的長(zhǎng);④NQ=QC.其中正確的結(jié)論是     .(把所有正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,DC是⊙O直徑,弦AB⊥CD于F,連接BC,DB,則下列結(jié)論錯(cuò)誤的是( 。
A.
B.AF=BF
C.OF=CF
D.∠DBC=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,半徑為1 cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為(  )

A.π cm2    B.π cm2
C. cm2     D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為

A. 2        B. 2        C. 2         D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),,則    °.

查看答案和解析>>

同步練習(xí)冊(cè)答案