【題目】如圖,在中,AB為的直徑,C為上一點,P是的中點,過點P作AC的垂線,交AC的延長線于點D.
(1)求證:DP是的切線;
(2)若AC=5,,求AP的長.
【答案】(1)見解析;(2)AP=.
【解析】
(1)根據(jù)題意連接OP,直接利用切線的定理進行分析證明即可;
(2)根據(jù)題意連接BC,交于OP于點G,利用三角函數(shù)和勾股定理以及矩形的性質進行綜合分析計算即可.
解:(1)證明:連接OP;
∵OP=OA;
∴∠1=∠2;
又∵P為D的中點;
∴
∴∠1=∠3;
∴∠3=∠2;
∴OP∥DA;
∵∠D=90°;
∴∠OPD=90°;
又∵OP為O半徑;
∴DP為O的切線;
(2)連接BC,交于OP于點G;
∵AB是圓O的直徑;
∴∠ACB為直角;
∵
∴sin∠ABC=
AC=5,則AB=13,半徑為
由勾股定理的BC=,那么CG=6
又∵四邊形DCGP為矩形;
∴GP=DC=6.5-2.5=4
∴AD=5+4=9;
在Rt△ADP中,AP=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形AOB,且OB=4,∠AOB=90°,C為弧AB上任意一點,過C點作CD⊥OB于點D,設△ODC的內心為E,連接OE、CE,當點C從點B運動到點A時,內心E所經(jīng)過的路徑長為 ________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為6的⊙O中,正六邊形ABCDEF與正方形AGDH都內接于⊙O,則圖中陰影部分的面積為( 。
A. 27﹣9B. 18C. 54﹣18D. 54
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,以的邊為直徑作,點在上,是的弦,,過點作于點,交于點,過點作交的延長線于點.
(1)求證:是的切線;
(2)求證:;
(3)若,CG=4,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,已知,,點是對角線上一動點(不與,重合),連接,過點作,交于點,
(1)求證:;
(2)當點是的中點時,求的值;
(3)在點運動過程中,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計劃用塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗,恰好配套),設用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新冠狀病毒疫情爆發(fā),湖北武漢需要大量救援物資.如圖小明站在一棟五層居民樓的第五層(每層高度相等),眼睛離五樓地面的距離m.他發(fā)現(xiàn)樓外面停著一輛裝載救援物資的貨車,貨車尾部C點到樓體的水平距離m,車箱頂部C點與地面的垂直距離m;在E點測得C點的俯角為,測得D點的俯角為,求小明所在樓層的高度和貨車車箱的長度(結果保留小數(shù)點后一位).
(參考數(shù)據(jù):,.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com