【題目】如圖所示,把一根細線繩對折成兩條重合的線段,點在線段上,且

l)若細線繩的長度是,求圖中線段的長;

2)從點處把細線繩剪斷后展開,細線繩變成三段,若三段中最長的一段為,求原來細線繩的長.

【答案】1;(2.

【解析】

1)由“一根細線繩對折成兩條重合的線段”可知線段AB的長為細線長度的一半,由即可求出線段AP長;

2)分情況討論,當(dāng)點A為對折點時,最長的一段為PAP段,由此可求出AP長,根據(jù)可得BP長,易得AB長,由細線長為2AB求解即可;當(dāng)點B為對折點時,最長的一段為PBP段,由此可求出BP長,根據(jù)可得AP長,易得AB長,由細線長為2AB求解即可.

解:(1)由題意得,

所以圖中線段的長為.

(2)如圖,當(dāng)點A為對折點時,最長的一段為PAP段,

所以細線長為;

如圖,當(dāng)點B為對折點時,最長的一段為PBP段,

所以細線長為,

綜合上述,原來細線繩的長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,(1)在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點,若∠AMN=60°,求證:AM=MN.

(2)若將(1)中正三角形ABC”改為正方形ABCD”,N是∠DCP的平分線上一點,若∠AMN=90°,則AM=MN是否成立?若成立,請證明;若不成立,說明理由.

(3)若將(2)中的正方形ABCD”改為n邊形A1A2…An,其它條件不變,請你猜想:當(dāng)∠An2MN=_____°時,結(jié)論An2M=MN仍然成立.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列方程:①;②0.3x1;③;④x24x3;⑤x6;⑥x+2y0.其中一元一次方程的個數(shù)是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為整圓.如圖,直線l:y=kx+4x軸、y軸分別交于A、B,OAB=30°,點Px軸上,⊙Pl相切,當(dāng)P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為6,點P從點B出發(fā)沿射線BA移動,同時,點Q從點C出發(fā)沿線段AC的延長線移動,已知點P、Q移動的速度相同,PQ與直線BC相交于點D.

1)如圖①,當(dāng)點PAB的中點時,求CD的長;

2)如圖②,過點P作直線BC的垂線,垂足為E,當(dāng)點P、Q在移動的過程中,線段BE、DE、CD中是否存在長度保持不變的線段?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖,已知AB⊙O的直徑,點PBA的延長線上,PD⊙O于點D,過點BBE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E

1)求證:AB=BE;

2)若PA=2cosB=,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,分為普通快車和優(yōu)享型快車;兩種.下表是普通快車的收費標準:

計費項目

起步價

里程費

時長費

遠途費

計費價格

8

2.0/公里

0.4/

1.0/公里

注:車費由起步價、里程費、時長費、遠途費四部分組成,其中起步價包含里程2公里,時長5分鐘;里程2公里的部分按計價標準收取里程費;時長5分鐘的部分按計價標準收取時長費;遠途費的收取方式為:行車15公里以內(nèi)(含15公里)不收遠途費,超過15公里的,超出部分每公里加收1.0元.

1)張敏乘坐滴滴普通快車,行車里程7公里,行車時間15分鐘,求張敏下車時付多少車費?

2)王紅乘坐滴滴普通快車,行車里程22公里,下車時所付車費63.4元,則這輛滴滴快車的行車時間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二年級教師對試卷講評課中學(xué)生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了 名學(xué)生;

(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市有6000名初二學(xué)生,那么在試卷評講課中,“獨立思考”的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為原點,為數(shù)軸上兩點,,且

1、對應(yīng)的數(shù)分別為________、________

2)點、分別以個單位/秒和個單位/秒的速度相向而行,則幾秒后、相距個單位長度?

3)動點從點出發(fā),沿數(shù)軸正方向運動,為線段的中點,為線段的中點.在點運動的過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段的長.

查看答案和解析>>

同步練習(xí)冊答案