【題目】已知是關(guān)于的方程的一個實(shí)數(shù)根,并且這個方程的兩個實(shí)數(shù)根恰好是等腰三角形的兩條邊長,則的周長為( )
A. 6 B. 8 C. 10 D. 8或10
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)若∠BAC=40°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)求證:EF2+BF2=2AC2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成證明及理由
已知:∠1=∠E,∠B=∠D
求證:AB∥CD
證明:∵ ∠1=∠E( )
∴_______∥_______ ( )
∴ ∠D+∠2=180°( )
∵ ∠B=∠D( )
∴ ∠_______+ ∠_______ = 180°( )
∴ AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)過市場調(diào)查發(fā)現(xiàn),該公司生產(chǎn)的某商品在第x天的銷售單價元件為且該商品每天的銷量件滿足關(guān)系式
已知該商品第10天的售價若按8折出售,仍然可以獲得的利潤.
求公司生產(chǎn)該商品每件的成本為多少元?
問銷售該商品第幾天時,當(dāng)天的利潤最大?最大利潤是多少?
該公司每天還需要支付人工、水電和房租等其他費(fèi)用共計a元,這60天內(nèi)要保證至少55天最多57天在除去各項費(fèi)用后還有盈利,則a的取值范圍是______直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是( 。
A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△AFD和△CEB中,點(diǎn)A、E、F、C在同一條直線上.有下面四個論斷:
(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.
請用其中三個作為條件,余下一個作為結(jié)論,進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖.在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中正確的有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動準(zhǔn)備制作一組三角形,記這些三角形分別為,用記號表示一個滿足條件的三角形,如(2,4,4)表示邊長分別為2,4,4個單位長度的一個三角形.
(1)若這些三角形三邊的長度為大于0且小于3的整數(shù)個單位長度,請用記號寫出所有滿足條件的三角形;
(2)如圖,是的中線,線段的長度分別為2個,6個單位長度,且線段的長度為整數(shù)個單位長度,過點(diǎn)作交的延長線于點(diǎn).
①求的長度;
②請直接用記號表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點(diǎn)D是AB的中點(diǎn),連結(jié)CD,動點(diǎn)P從點(diǎn)A出發(fā),沿A→C→B的路徑運(yùn)動,到達(dá)點(diǎn)B時運(yùn)動停止,速度為每秒2 cm,設(shè)運(yùn)動時間為秒.
(1)求CD的長;
(2)當(dāng)為何值時,△ADP是直角三角形?
(3)直接寫出:當(dāng)為何值時,△ADP是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com