【題目】如圖,在等邊△ABC中,過A,B,C三點(diǎn)在三角形內(nèi)分別作∠1=∠2=∠3,三個(gè)角的邊相交于D,E,F,
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明.
(2)△DEF是否為正三角形?請說明理由.
【答案】(1)見解析;(2)見解析;
【解析】
(1)由正三角形的性質(zhì)得出∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;
(2)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;
(1)∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC-∠2,∠BCE=∠ACB-∠3,∠2=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中
,
∴△ABD≌△BCE(ASA);
(2)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:在綜合與實(shí)踐課上,同學(xué)們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學(xué)活動(dòng),小穎想到借助正方形網(wǎng)格解決問題。圖1、圖2都是8×8的正方形網(wǎng)格,每個(gè)小正方形的邊長均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn)。
操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點(diǎn)A、B、C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE、EF分別經(jīng)過點(diǎn)C、A,她借助此圖求出了△ABC的面積。
(1)在圖1中,小穎所畫的△ABC的三邊長分別是AB= ,BC= ,AC= ;△ABC的面積為 。
(2)請你根據(jù)小穎的思路,在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)△DEF,使三角形三邊長分別為2、、,并直接寫出△DEF的面積= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請?jiān)趫D中作出△ABC關(guān)于y軸對稱圖形△DEF(A、B、C的對應(yīng)點(diǎn)分別是D、E、F),并直寫出D、E、F的坐標(biāo).D、E、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , );
(2)求四邊形ABED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過,,軸于點(diǎn),四邊形為正方形,點(diǎn)在線段上,點(diǎn)在此拋物線上,且在直線的左側(cè),則正方形的邊長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于,,三點(diǎn),一次函數(shù)的圖象與拋物線交于,兩點(diǎn).
求點(diǎn),,的坐標(biāo);
當(dāng)兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;
當(dāng)自變量滿足什么范圍時(shí),一次函數(shù)值大于二次函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A、B兩個(gè)頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點(diǎn)M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D為BC邊上的一點(diǎn),若∠B=36°,AB=AC=BD=2.
(1)求CD的長;
(2)利用此圖求sin18°的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com