【題目】畢達(dá)哥拉斯學(xué)派對(duì)”數(shù)”與”形”的巧妙結(jié)合作了如下研究:
請(qǐng)?jiān)诖痤}卡上寫出第六層各個(gè)圖形的幾何點(diǎn)數(shù),并歸納出第n層各個(gè)圖形的幾何點(diǎn)數(shù).
【答案】6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
【解析】
試題分析:先看三角形數(shù),根據(jù)前三層的幾何點(diǎn)數(shù)分別是1、2、3,可得第六層的幾何點(diǎn)數(shù)是6,第n層的幾何點(diǎn)數(shù)是n;
然后看正方形數(shù),根據(jù)前三層的幾何點(diǎn)數(shù)分別是1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,可得第六層的幾何點(diǎn)數(shù)是2×6﹣1=11,第n層的幾何點(diǎn)數(shù)是2n﹣1;
再看五邊形數(shù),根據(jù)前三層的幾何點(diǎn)數(shù)分別是1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,可得第六層的幾何點(diǎn)數(shù)是3×6﹣2=16,第n層的幾何點(diǎn)數(shù)是3n﹣2;
最后看六邊形數(shù),根據(jù)前三層的幾何點(diǎn)數(shù)分別是1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,可得第六層的幾何點(diǎn)數(shù)是4×6﹣3=21,第n層的幾何點(diǎn)數(shù)是4n﹣3.
試題解析:∵前三層三角形的幾何點(diǎn)數(shù)分別是1、2、3,∴第六層的幾何點(diǎn)數(shù)是6,第n層的幾何點(diǎn)數(shù)是n;
∵前三層正方形的幾何點(diǎn)數(shù)分別是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,∴第六層的幾何點(diǎn)數(shù)是:2×6﹣1=11,第n層的幾何點(diǎn)數(shù)是2n﹣1;
∵前三層五邊形的幾何點(diǎn)數(shù)分別是:1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,∴第六層的幾何點(diǎn)數(shù)是:3×6﹣2=16,第n層的幾何點(diǎn)數(shù)是3n﹣2;
前三層六邊形的幾何點(diǎn)數(shù)分別是:1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,∴第六層的幾何點(diǎn)數(shù)是:4×6﹣3=21,第n層的幾何點(diǎn)數(shù)是4n﹣3.
故答案為:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=2x﹣1一定經(jīng)過點(diǎn)( )
A. (1,0) B. (1,2) C. (0,2) D. (0,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某倉庫原有某種貨物庫存270千克,現(xiàn)規(guī)定運(yùn)入為正,運(yùn)出為負(fù),一天中七次出入如表(單位:千克)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
﹣30 | +82 | ﹣19 | +102 | ﹣96 | +34 | ﹣28 |
(1)在第次紀(jì)錄時(shí)庫存最多.
(2)求最終這一天庫存增加或減少了多少?
(3)若貨物裝卸費(fèi)用為每千克0.3元,問這一天需裝卸費(fèi)用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=﹣x2向左平移2個(gè)單位后,得到的拋物線的解析式是( )
A.y=﹣(x+2)2
B.y=﹣x2+2
C.y=﹣(x﹣2)2
D.y=﹣x2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫作法,保留作圖痕跡);
(2)連結(jié)AP,若AC=4,BC=8時(shí),試求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格中.點(diǎn)A,B,D均在格點(diǎn)上,點(diǎn)E、F分別為線段BC、DB上的動(dòng)點(diǎn),且BE=DF.
(1)如圖①,當(dāng)BE=時(shí),計(jì)算AE+AF的值等于 ;
(2)當(dāng)AE+AF取得最小值時(shí),請(qǐng)?jiān)谌鐖D②所示的網(wǎng)格中,用無刻度的直尺,畫出線段AE,AF,并簡(jiǎn)要說明點(diǎn)E和點(diǎn)F的位置如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a、b、c是實(shí)數(shù),點(diǎn)A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是bc(用“>”或“<”號(hào)填空)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com