【題目】如圖,ABC內接于⊙O,且AB為⊙O的直徑ODAB,與AC交于點E,與過點C的⊙O切線交于點D.

(1)若AC=6,BC=3,求OE的長.

(2)試判斷∠A與∠CDE的數(shù)量關系,并說明理由.

【答案】(1)證明見解析;(2)∠CDE=2A,理由見解析.

【解析】分析:(1)由勾股定理求AB,證明AOE∽△ACB,根據相似三角形的對應線段成比例求OE;(2)連接OC,可知∠3=2∠A,只需用同角的余角證∠D=∠3即可.

詳解:(1)∵AB為⊙O的直徑,∴∠ACB=900

RtABC,由勾股定理得:AB=3,

OAAB.

ODAB,∴∠AOE=∠ACB=900,由∵∠A=∠A,∴△AOE∽△ACB,

,即,解得:OE.

(2)∠CDE=2∠A

理由如下:連接OC,如圖所示:

OAOC,∴∠1=∠A,

CD是⊙O的切線,∴OCCD,∴∠OCD=900,∴∠2+∠CDE=900,

ODAB,∴∠2+∠3=900,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,

∴∠CDE=2∠A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC內有一點P,過點P作直線lAB,交ACE點.今欲在∠BAC的兩邊上各找一點Q、R,使得PQR的中點,以下是甲、乙兩人的作法:

甲:①過P作直線l1AC,交直線ABF點,并連接EF;

②過P作直線l2EF,分別交兩直線AB、ACQ、R兩點,則Q、R即為所求.

乙:①在直線AC上另取一點R,使得AE=ER;

②作直線PR,交直線ABQ點,則Q、R即為所求.

下列判斷正確的是(  )

A. 兩人皆正確 B. 兩人皆錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進而求出等邊△ABC的邊長為,問題得到解決.

請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題提出】

如圖①,已知ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將BCE繞點C順時針旋轉60°ACF連接EF

試證明:AB=DB+AF

【類比探究】

(1)如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關系?請說明理由

(2)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.

(1)求拋物線的解析式;

(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點Py軸的平行線交直線EO于點G,作PHEO,垂足為H.設PH的長為l,點P的橫坐標為m,求lm的函數(shù)關系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平行四邊形的一邊長為7,則它的兩條對角線長可以是(  )

A. 122 B. 34 C. 1416 D. 48

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東東在研究數(shù)學問題時遇到一個定義:將三個已經排好順序數(shù):x1,x2,x3,稱為數(shù)列x1,x2x3.計算|x1|,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2,x3的最佳值.例如,對于數(shù)列2-1,3,因為|2|=2,==,所以數(shù)列2,-1,3的最佳值為

東東進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應的最佳值.如數(shù)列-12,3的最佳值為;數(shù)列3,-12的最佳值為1;.經過研究,東東發(fā)現(xiàn),對于“2-1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,最佳值的最小值為.根據以上材料,回答下列問題:

1)數(shù)列-4,-3,1的最佳值為

2)將“-4,-32”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的最佳值的最小值為 ,取得最佳值最小值的數(shù)列為 (寫出一個即可);

3)將2,-9,aa1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的最佳值為1,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)用“*”表示一種新運算:對于任意正實數(shù)a,b,都有.例如,,那么15*27__;(2)定義一種運算*,其規(guī)則為:ab,a*bb3;ab,a*bb2.根據這個規(guī)則,方程3*x27的解是__.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在寬為22米的九州大道兩邊安裝路燈,路燈的燈臂CD2米,且與燈柱BC120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應該設計為( 。

A. 112)米 B. 112)米 C. 112)米 D. 114)米

查看答案和解析>>

同步練習冊答案