【題目】如圖,等腰△AOB中,AO=BO=2,點(diǎn)A在x軸上,OB與x軸的夾角為45°;
(1)求直線AB、OB的解析式;
(2)若將△AOB沿著x軸翻折再向右平移兩個(gè)單位求直線AB的解析式.
【答案】(1)直線AB的解析式為:y=(﹣1)x+2+1,直線OB的解析式為y=x;(2)y=﹣(1+)x.
【解析】
(1)過B作BC⊥x軸于C,根據(jù)已知條件得到BC=OC,求得A(-2,0),B(,),解方程組即可得到結(jié)論;
(2)根據(jù)折疊的性質(zhì)得到點(diǎn)B的對(duì)稱點(diǎn)為B′(,-),向右平移兩個(gè)單位,得到點(diǎn)A的對(duì)稱點(diǎn)為A′(0,0),點(diǎn)B′的對(duì)稱點(diǎn)B″(+2,-),解方程組即可得到結(jié)論.
(1)過B作BC⊥x軸于c,
∵∠BOC=45°,
∴BC=OC,
∵AO=BO=2,
∴BC=OC=,
∴A(﹣2,0),B(,),
設(shè)直線AB的解析式為:y=kx+b,
∴,
解得:,
∴直線AB的解析式為:y=(﹣1)x+2+1,
設(shè)直線OB的解析式為y=mx,
∴=m,
∴m=1,
∴直線OB的解析式為y=x;
(2)∵將△AOB沿著x軸翻折,
∴點(diǎn)B的對(duì)稱點(diǎn)為B′(,﹣),
∵再向右平移兩個(gè)單位,
∴點(diǎn)A的對(duì)稱點(diǎn)為A′(0,0),點(diǎn)B′的對(duì)稱點(diǎn)B″(+2,﹣),
設(shè)平移后的直線的解析式為:y=ax,
∴﹣=(+2)a,
∴a=﹣(1+),
∴將△AOB沿著x軸翻折再向右平移兩個(gè)單位求直線AB的解析式為y=﹣(1+)x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知單位長度為1的方格中有三角形ABC.
(1)請(qǐng)畫出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;
(2)請(qǐng)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(在圖中畫出),然后寫出點(diǎn)B,B′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為 的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),在運(yùn)動(dòng)過程中,則線段CP的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,OP為一墻面,它與地面OQ垂直,有一根木棒AB如圖放置,點(diǎn)C是它的中點(diǎn),現(xiàn)在將木棒的A點(diǎn)在OP上由A點(diǎn)向下滑動(dòng),點(diǎn)B由O點(diǎn)向OQ方向滑動(dòng),直到AB橫放在地面為止.
(1)在AB滑動(dòng)過程中,點(diǎn)C經(jīng)過的路徑可以用下列哪個(gè)圖象來描述( )
(2)若木棒長度為2m,如圖②射線OM與地面夾角∠MOQ=60°,當(dāng)AB滑動(dòng)過程中,與OM并于點(diǎn)D,分別求出當(dāng)AD= 、AD=1、AD= 時(shí),OD的值.
(3)如圖③,是一個(gè)城市下水道,下水道入口寬40cm,下水道水平段高度為40cm,現(xiàn)在要想把整根木棒AB通入下水道水平段進(jìn)行工作,那么這根木棒最長可以是(cm)(直接寫出結(jié)果,結(jié)果四舍五入取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在處,交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長線上的點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AED=2∠EAD,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:=(a≠0),即a的負(fù)P次冪等于a的p次冪的倒數(shù).例:=
(1)計(jì)算:=__;=__;
(2)如果=,那么p=__;如果=,那么a=__;
(3)如果=,且a、p為整數(shù),求滿足條件的a、p的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,∠ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕交CD邊于點(diǎn)E.
(1)求證:四邊形BCED′是菱形;
(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國道路交通管理?xiàng)l例”規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測儀正前方30 m處,過了2 s后,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com