【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=8,AD=12,M是AD邊的中點,P是AB邊上的一個動點(不與A、B重合),PM的延長線交射線CD于Q點,MN⊥PQ交射線BC于N點。
(1)若點N在BC之間時,如圖:
①求證:∠NPQ=∠PQN;
②請問是否為定值?若是定值,求出該定值;若不是,請舉反例說明;
(2)當(dāng)△PBN與△NCQ的面積相等時,求AP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,E、F分別是BC、AC的中點,延長BA到點D,使2AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點為“格點”,以格點為頂點的三角形叫做“格點三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點三角形A′B′C′是由格點三角形ABC通過怎樣的平移得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-3,4),請寫出格點三角形DEF各頂點的坐標(biāo),并求出三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD,對角線交點為O,延長CD至E且CD=DE.下列判斷正確個數(shù)是( 。
(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是矩形的邊上一點,以為折痕翻折,使得點的對應(yīng)點落在矩形內(nèi)部點處,連接,若,,當(dāng)是以為底的等腰三角形時, ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=x與雙曲線交于A、B兩點,且點A的坐標(biāo)為(6,m).
(1)求雙曲線的解析式;
(2)點C(n,4)在雙曲線上,求△AOC的面積;
(3)在(2)的條件下,在x軸上找出一點P,使△AOC的面積等于△AOP的面積的三倍.請直接寫出所有符合條件的點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com