【題目】化簡并求值:
(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.
(2)已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.
【答案】(1), ;(2)-30.
【解析】試題分析:(1)先去括號,然后合并同類項(xiàng),再把數(shù)值代入進(jìn)行求值即可;
(2)先對所求式子進(jìn)行化簡,然后根據(jù)|x+1|+(y﹣2)2=0求出x、y的值,最后再代入進(jìn)行求值即可.
試題解析:(1)原式= =,
當(dāng)時(shí),原式==;
(2)(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]
=2x2y-2xy2-3x2y2-3x2y-3x2y2+3xy2=-6x2y2-x2y+xy2,
由|x+1|+(y﹣2)2=0可得: ,
所以:原式= =-30.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AE=CD,AD、BE交于Q點(diǎn),BP⊥AD于P點(diǎn).
求證:
(1)△BAE≌△ACD;
(2)∠BQP=60°;
(3)BQ=2PQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中, ,,延長到,使,以為圓心, 長為半徑作⊙交延長線于點(diǎn),連接.
(1)求證: 是⊙的切線;
(2)若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點(diǎn)P是正方形ABCD的BC邊上的一點(diǎn),以DP為邊長的正方形DEFP與正方形ABCD在BC的同側(cè),連接AC、FB.
(1)請你判斷FB與AC又怎樣的位置關(guān)系?并證明你的結(jié)論;
(2)若點(diǎn)P在射線CB上運(yùn)動時(shí),如圖②,判斷(1)中的結(jié)論FB與AC的位置關(guān)系是否仍然成立?并說明理由;
(3)當(dāng)點(diǎn)P在直線CB上運(yùn)動時(shí),請你指出點(diǎn)E的運(yùn)動路線,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點(diǎn),EC=4,△ABC的周長為23,則△ABD的周長為( )
A.13
B.15
C.17
D.19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的內(nèi)角和與外角和相等,則這個(gè)多邊形是【 】
A.四邊形 B.五邊形 C.六邊形 D.八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上一點(diǎn),AB=12cm,C、D兩點(diǎn)分別從P、B出發(fā)以1cm/s、2cm/s的速度沿直線AB向左運(yùn)動(C在線段AP上,D在線段BP上),運(yùn)動的時(shí)間為t.
(1)當(dāng)t=1時(shí),PD=2AC,請求出AP的長;
(2)當(dāng)t=2時(shí),PD=2AC,請求出AP的長;
(3)若C、D運(yùn)動到任一時(shí)刻時(shí),總有PD=2AC,請求出AP的長;
(4)在(3)的條件下,Q是直線AB上一點(diǎn),且AQ﹣BQ=PQ,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2-2x-3=0,原方程應(yīng)變形為( ).
A. (x-1)2=2 B. (x+1)2=4 C. (x-1)2=4 D. (x+1)2=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com