【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,EBC= °;

(2)平面內(nèi)將一副三角板按如圖2所示擺放,若EBC=165°,那么α= °;

(3)平面內(nèi)將一副三角板按如圖3所示擺放,EBC=115°,求α的度數(shù).

【答案】1150°215°335°

【解析】

試題分析:(1)(2)根據(jù)角的和差關(guān)系可直接算出答案;

(3)首先計算出DBC的度數(shù),再用ABC的度數(shù)減去DBC的度數(shù)即可.

解:(1)EBC=90°+60°=150°;

(2)α=EBCDBEABC=165°﹣90°﹣60°=15°;

(3)因為EBC=115°,EBD=90°,

所以DBC=EBCEBD=25°

因為ABC=60°,

所以α=ABCDBC=35°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我叫小白,你知道嗎,2014年底南水北調(diào)中期工程開始運行,“南水”進京了,但是北京仍是特大型缺水城市,人均水資源量不到全國平均水平的 .你了解嗎,家庭中的沖水馬桶是“大戶”,用水量大約占家庭用水量的36%左右,兩年前,我家每個月都要沖掉約3000升水.近兩年來,我家使用新型沖水馬桶,同時注意各種方法節(jié)水,現(xiàn)在我家全年用水量只有64000升,請你幫我算算,我家這兩年用水的年平均下降率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一個面積為1的正方形,經(jīng)過一次生長后,在它的左右肩上生出兩個小正方形,如圖2,其中,三個正方形圍成的三角形是直角三角形.再經(jīng)過一次生長后,變成圖3;生長”10次后,如果繼續(xù)生長下去,它將變得更加枝繁葉茂

隨著不斷地生長,形成的圖形中所有正方形的面積和也隨之變化.若生長n次后,變成的圖中所有正方形的面積用Sn表示,求回答:

1S0 S1 ,S2 ,S3 ;

2S0S1S2S10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AF分別與BD、CE交于點G、H,∠1=50°,∠2=130°.

1BDCE平行嗎?為什么?

2)若∠A=F,探索∠C與∠D的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在圖中作出△ABC關(guān)于直線m對稱的△ABC′,并寫出A′、B′、C′三點的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點Pxy)關(guān)于直線m對稱點P′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“倡導(dǎo)全民閱讀”、“推動國民素質(zhì)和社會文明程度顯著提高”已成為“十三五”時期的重要工作.教育主管部門對某學(xué)校青年學(xué)校青年教師2016年度閱讀情況進行了問卷調(diào)查,并將收集的數(shù)據(jù)統(tǒng)計如表,根據(jù)表中的信息判斷,下列結(jié)論錯誤的是(  )

A. 該學(xué)校中參與調(diào)查的青年教師人數(shù)為40人

B. 該學(xué)校中青年教師2016年平均每人閱讀8本書

C. 該學(xué)校中青年教師2016年度看書數(shù)量的中位數(shù)為4本

D. 該學(xué)校中青年教師2016年度看書數(shù)量的眾數(shù)為4本

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ,以下五個結(jié)論:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的結(jié)論有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當(dāng)火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求A,B兩點間的距離(結(jié)果精確到0.1km).
(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式(x2+mxy+3)﹣(3x2y+1nx2).

1)若多項式的值與字母x的取值無關(guān),求m,n的值;

2)先化簡多項式3m2mnn2)﹣(3m2+mn+n2),再求它的值;

3)在(1)的條件下,求(n+m2+2n+m2+3n+m2++9n+m2).

查看答案和解析>>

同步練習(xí)冊答案