【題目】如圖拋物線y=x2+bx-c經(jīng)過直線y=x-3與坐標軸的兩個交點A,B,與x軸交于另一點C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)求S△ACD的面積.
【答案】(1) y=x2-2x-3;(2)S△ACD的面積為8.
【解析】
(1)根據(jù)一次函數(shù)的解析式求出A、B點坐標,再代入拋物線解析式即可;
(2)求出C點坐標,確定AC長,再根據(jù)拋物線解析式求出頂點D坐標,則面積可求.
解:(1)當x=0時,y=x-3=-3,
∴B(0,-3);當y=0時,x=3,
∴A(3,0).
∵拋物線y=x2+bx-c經(jīng)過A、B兩點,
∴,解得b=-2.
所以拋物線的解析式為y=x2-2x-3.
(2)根據(jù)0=x2-2x-3,解得x=-1或3,
∴C(-1,0).
∴AC=4.
拋物線的頂點坐標為(1,-4),所以S△ACD的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為3的正方形紙片ABCD對折,使AB與DC重合,折痕為EF,展平后,再將點B折到邊CD上,使邊AB經(jīng)過點E,折痕為GH,點B的對應點為M,點A的對應點為N,那么折痕GH的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點E、A、C在同一條直線上,AB∥CD,AB=CE,∠B=∠E.
(1)求證:△ABC≌△CED;
(2)若∠B=25°,∠ACB=45°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x.
(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;
(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);
(3)根據(jù)圖象,寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,將線段AC繞著點C逆時針旋轉得到線段CD,旋轉角為α.
(1)如圖,∠BAC=90°,α=45°,試求點D到邊AB,AC的距離的比值;
(2)如圖,∠BAC=100°,α=20°,連接AD,BD,求∠CBD的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交A(-3,0),B(1,0)兩點,與y軸交于點C(0,3),點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)設點T在第二象限的拋物線上,若其關于原點的對稱點也在拋物線上,求點T的坐標;
(3)點M為線段AB上一點(點M不與點A,B重合),過M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過P作PQ∥AB交拋物線于點Q,過Q作QN⊥x軸于N,當矩形PMNQ的周長最大時,求△AEM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABOC是正方形,點A的坐標為(1,1),弧AA1是以點B為圓心,BA為半徑的圓弧;弧A1A2是以點O為圓心,OA2為半徑的圓;弧A2A3是以點C為圓心,CA2為半徑的圓。换A3A4是以點A為圓心,AA3為半徑的圓弧,繼續(xù)以點B、O、C、A為圓心,按上述作法得到的曲線AA1A2A3A4A5…稱為正方形的“漸開線”,則點A2019的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學初三年級積極推進走班制教學。為了了解一段時間以來,“至善班”的學習效果,年級組織了多次定時測試,現(xiàn)隨機選取甲、乙兩個“至善班”,從中各抽取名同學在某一次定時測試中的數(shù)學成績,其結果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的名同學的數(shù)學成績統(tǒng)計(滿分為分) (單位:分)
“至善班”甲=乙班的名同學的數(shù)學成績統(tǒng)計(滿分為分) (單位:分)
整理數(shù)據(jù):(成績得分用表示)
分析數(shù)據(jù),并回答下列問題:
完成下表:
在“至善班”甲班的扇形圖中,成績在的扇形中,說對的圓心角的度數(shù)為 .估計全部“至善班”的人中優(yōu)秀人數(shù)為 人.(分及以上為優(yōu)秀).
根據(jù)以上數(shù)據(jù),你認為“至善班” 班(填“甲”或“乙”)所選取做樣本的同學的學習效果更好一些,你所做判斷的理由是:
① .
② .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com