【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個動點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時,求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.
【答案】解:(1)證明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C。
在△APQ與△ABC中,∵∠APQ=∠C,∠A=∠A,
∴△APQ∽△ABC。
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5。
∵∠BPQ為鈍角,∴當(dāng)△PQB為等腰三角形時,只可能是PB=PQ。
(I)當(dāng)點(diǎn)P在線段AB上時,如題圖1所示,
由(1)可知,△APQ∽△ABC,
∴,即,解得:。
∴。
(II)當(dāng)點(diǎn)P在線段AB的延長線上時,如題圖2所示,
∵BP=BQ,∴∠BQP=∠P。
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A。∴BQ=AB。
∴AB=BP,點(diǎn)B為線段AB中點(diǎn)。
∴AP=2AB=2×3=6。
綜上所述,當(dāng)△PQB為等腰三角形時,AP的長為或6。
【解析】
試題(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△APQ∽△ABC。
(2)當(dāng)△PQB為等腰三角形時,有兩種情況,需要分類討論.
(I)當(dāng)點(diǎn)P在線段AB上時,如題圖1所示.由三角形相似(△APQ∽△ABC)關(guān)系計算AP的長;
(II)當(dāng)點(diǎn)P在線段AB的延長線上時,如題圖2所示.利用角之間的關(guān)系,證明點(diǎn)B為線段AP的中點(diǎn),從而可以求出AP。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點(diǎn)D,半徑OE∥BD,連接BE,DE,BD,設(shè)BE交AC于點(diǎn)F,若∠DEB=∠DBC.
(1)求證:BC是⊙O的切線;
(2)若BF=BC=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB和DE是直立在地面上的兩根立柱,AB=5 m,某一時刻AB在陽光下的投影BC=2 m.
(1)請你畫出此時DE在陽光下的投影;
(2)在測量AB的投影長時,同時測量出DE在陽光下的投影長為5 m,請你計算DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學(xué)進(jìn)行的推理,請你將小麗同學(xué)的推理過程補(bǔ)充完整.
解:成立,理由如下:
(已知)
① (同旁內(nèi)角互補(bǔ),兩條直線平行)
(② )
又(已知),(等量代換)
(③ )
(④ ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條路同時從學(xué)校出發(fā)到學(xué)校圖書館查閱資料,學(xué)校與圖書館的路程是千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)圖書館,圖中折線和線段分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系;
(3)求線段的函數(shù)關(guān)系式;
(4)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,
(1)求DE的長;
(2)過點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長;
(3)過點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(a≠0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為(3,0),頂點(diǎn)C的坐標(biāo)為(1,4).
(1)求二次函數(shù)的解析式和直線BD的解析式;
(2)點(diǎn)P是直線BD上的一個動點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時,求線段PM長度的最大值;
(3)在拋物線上是否存在異于B、D的點(diǎn)Q,使△BDQ中BD邊上的高為?若存在求出點(diǎn)Q的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=4,BC=5,AC的長是一元二次方程x2﹣15x+54=0的一個根.
(1)求AC的長;
(2)在AC上找一點(diǎn)D,連接BD,使△ABD∽△ACB;
(3)以AC為一邊作一個三角形ACM,求出sin∠AMC的值.(所作三角形自己設(shè)計)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com