【題目】梅凱種子公司以一定價(jià)格銷售“黃金1號”玉米種子,如果一次購買10千克以上(不含l0千克)的種子,超過l0千克的那部分種子的價(jià)格將打折,并依此得到付款金額y(單位:元)與一次購買種子數(shù)量x(單位:千克)之間的函數(shù)關(guān)系如圖所示.下列四種說法:
①一次購買種子數(shù)量不超過l0千克時,銷售價(jià)格為5元/千克;
②一次購買30千克種子時,付款金額為100元;
③一次購買10千克以上種子時,超過l0千克的那部分種子的價(jià)格打五折:
④一次購買40千克種子比分兩次購買且每次購買20千克種子少花25元錢.
其中正確的個數(shù)是
A. 1個B. 2個C. 3個D. 4個
【答案】D
【解析】
①由圖可知,購買10千克種子需要50元,由此求出一次購買種子數(shù)量不超過10千克時的銷售價(jià)格;
②由圖可知,超過10千克以后,超過的那部分種子的單價(jià)降低,而由購買50千克比購買10千克種子多付100元,求出超過10千克以后,超過的那部分種子的單價(jià),再計(jì)算出一次購買30千克種子時的付款金額;
③根據(jù)一次購買10千克以上種子時,超過10千克的那部分種子的價(jià)格為2.5元/千克,而2.5÷5=0.5,所以可以求出打的折數(shù);
④先求出一次購買40千克種子的付款金額為125元,再求出分兩次購買且每次購買20千克種子的付款金額為150元,然后用150減去125,即可求出一次購買40千克種子比分兩次購買且每次購買20千克種子少花的錢數(shù).
解:①由圖可知,一次購買種子數(shù)量不超過10千克時,銷售價(jià)格為:50÷10=5元/千克,正確;
②由圖可知,超過10千克的那部分種子的價(jià)格為:(150-50)÷(50-10)=2.5元/千克,所以,一次購買30千克種子時,付款金額為:50+2.5×(30-10)=100元,正確;
③由于一次購買10千克以上種子時,超過10千克的那部分種子的價(jià)格為2.5元/千克,而2.5÷5=0.5,所以打五折,正確;
④由于一次購買40千克種子需要:50+2.5×(40-10)=125元,
分兩次購買且每次購買20千克種子需要:2×[50+2.5×(20-10)]=150元,
而150-125=25元,
所以一次購買40千克種子比分兩次購買且每次購買20千克種子少花25元錢,正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AC與線段AO如圖所示:
(1)求出直線AC的解析式;
(2)求出線段AO的解析式,及自變量x的取值范圍
(3)求出△AOC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時,銷售量為36本;當(dāng)銷售單價(jià)為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價(jià)定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)A(-3,0),點(diǎn)B(3,0),點(diǎn)D是y軸上的一個動點(diǎn),連接BD,將線段BD繞點(diǎn)B逆時針旋轉(zhuǎn)60°,得到線段BE,連接DE,得到△BDE,則OE的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=x+2與x軸、y軸分別交于A,B兩點(diǎn),C是第一象限內(nèi)直線AB上一點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D,且CD的長為,P是x軸上的動點(diǎn),N是直線AB上的動點(diǎn).
(1)直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)如圖①,若點(diǎn)M的坐標(biāo)為(0,),是否存在這樣的P點(diǎn).使以O,P,M,N為頂點(diǎn)的四邊形是平行四邊形?若有在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)如圖②,將直線AB繞點(diǎn)C逆時針旋轉(zhuǎn)交y軸于點(diǎn)F,交x軸于點(diǎn)E,若旋轉(zhuǎn)角即∠ACE=45°,求△BFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算: ﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化簡,再求值 (a2﹣b2),其中a=,b=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個填寫運(yùn)算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計(jì)算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD關(guān)于y軸對稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.
(1)求反比例函數(shù)及直線BD的解析式;
(2)求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求完成下列題目
(1)圖中有______塊小正方體;
(2)請?jiān)谙旅娣礁窦堉蟹謩e畫出它的主視圖、左視圖和俯視圖;
(3)用小正方體搭一幾何體,使得它的俯視圖和主視圖與你在上圖方格中所畫的圖一致,若這樣的幾何體最少要個小正方體,最多要個小正方體,則的值為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com