【題目】已知.
(1)如圖1,、分別平分、.試說明:;
(2)如圖2,若,,、分別平分、,那么 (只要直接填上正確結論即可).
【答案】(1)見解析;(2) 49°.
【解析】
(1)首先作FG∥AB,根據直線AB∥CD,可得EF∥CD,據此推得∠ABF+∠CDF=∠BFD即可,再根據BF,DF分別平分∠ABE,∠CDE,推得∠ABF+∠CDF=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,據此推得∠BFD=∠BED;
(2) 連接BD,先求出∠MBD+∠NDB的度數,再求出∠PBM+∠PDN的度數,再利用三角形內角和定理即可解決;
(3)連接BD,先求出∠MBD+∠NDB的度數,再求出∠PBM+∠PDN的度數,再利用三角形內角和定理即可解決.
(1)如圖1,作FG∥AB,
∵直線AB∥CD,
∴FG∥CD,
∴∠ABF=∠BFG,∠CDF=∠GFD,
∴∠ABF+∠CDF=∠BFG+∠GFD=∠BFD,
即∠ABF+∠CDF=∠BFD,
∵BF,DF分別平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE)
∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)
∠BED=∠ABE+∠CDE,
∴∠BFD=∠BED.
(2)連接BD,
∵∠BMN=133°,∠MND=145°,
∴∠MBD+∠NDB=360°-(133°+145°)=82°,
∵BP、DP分別平分∠ABM、∠NDC,
∴∠PBM=∠ABM,∠PDN=∠CDN,
∴∠PBM+∠PDN=(180°-82°)=49°,
∴∠BPD=180°-(∠MBD+∠NDB)-(∠PBM+∠PDN)=49°.
故答案為49°.
科目:初中數學 來源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學生在完成這道教材上的題目后,嘗試對圖形進行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現?
(1)小華首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質,小華用到的平行線性質可能是______________.
(2)接下來,小華用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點C,連接AC,EC后,用鼠標拖動點C,分別得到了圖(2)(3)(4),小華發(fā)現圖(3)正是上面題目的原型,于是她由上題的結論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數量關系.然后,她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數量關系.
請你在小華操作探究的基礎上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數量關系: .
②補全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數量關系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點G,H分別在直線AB、直線EF上,點C在兩直線外,連接CG,CH,GH,且GH同時平分∠BGC和∠FHC,請?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在八年級(1)班學生中開展對于“我國國家公祭日”知曉情況的問卷調查.
問卷調查的結果分為A、B、C、D四類,其中A類表示“非常了解”;B類表示“比較了解”;C類表示“基本了解”;D類表示“不太了解”;班長將本班同學的調查結果繪制成下列兩幅不完整的統(tǒng)計圖.
請根據上述信息解答下列問題:
(1)該班參與問卷調查的人數有 人;補全條形統(tǒng)計圖;
(2)求出C類人數占總調查人數的百分比及扇形統(tǒng)計圖中類所對應扇形圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,、、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網格點和直尺畫圖:
(1)在網格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,EF//AD,∠1=∠2,∠BAC=70°,請將求∠AGD 的過程補充完整.
解:∵EF//AD
∴∠2= ( )
∵∠1=∠2 ∴∠1=∠3 ( )
∴AB// ( )
∴∠BAC+ =180° ( )
∵∠BAC=70° ∴∠AGD= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,現將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經過點B。
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com